1、如图,AC、BD交于点E,若//CD,
,
,则△ADE的面积
的值是( )
A.5
B.3
C.2.5
D.1.5
2、关于x的方程(m+1)x2﹣(m﹣1)x+1=0是一元二次方程,那么m是( )
A. m≠1 B. m≠﹣1 C. m≠1且m≠﹣1 D. m≠0
3、如图,抛物线图象与x轴的交点分别是A(-3,0)和B(1,0),且与y轴正半轴交于C点,抛物线的顶点为D点.则下列说法中:①
;②
;③
;④当
是等腰直角三角形时,a=
;其中正确的结论有( )
A.①④
B.②④
C.②③④
D.②③
4、若抛物线的图象经过原点,则m的值是( )
A.1
B.3
C.1或3
D.
5、函数的图象如图,那么关于
的方程
的根的情况是 ( )
A. 有两个同号不等实数根 B. 有两个相等实数根
C. 有两个异号实数根 D. 无实数根
6、关于x的一元二次方程有实数根,则整数a的最大值是( )
A.1
B.2
C.3
D.4
7、抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是( )
A.先向左平移2个单位,再向上平移3个单位
B.先向左平移2个单位,再向下平移3个单位
C.先向右平移2个单位,再向下平移3个单位
D.先向右平移2个单位,再向上平移3个单位
8、下列计算正确的是( )
A.
B.
C.
D.
9、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,过点(0,1)和(﹣1,0),给出以下结论:①ab<0;②4a+c<1+b2;③0<c+b+a<2;④0<b<2;⑤当x>﹣1时,y>0;⑥8a+7b+2c﹣9<0其中正确结论的个数是( )
A.6 B.5 C.4 D.3
10、已知的直径为4,则它的内接正六边形的面积为( )
A.
B.12
C.24
D.
11、方程的解为_____.
12、如图,在平面直角坐标系中,已知点A(﹣2,1),B(﹣1,4),C(﹣1,1),将△ABC先向右平移3个单位长度得到△A1B1C1,再绕C1顺时针方向旋转90°得到△A2B2C1,则A2的坐标是____.
13、已知一元二次方程有一个根为2,则
的值为___________.
14、如图,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同 时闭合开关②③或同时闭合开关④⑤⑥都可使小灯泡发光,则任意闭合电路上其中的两个开关,小灯泡发光的概率为____________.
15、已知抛物线与
轴交于
,
两点,顶点为
,如果
为直角三角形,则
________.
16、计算:2cos60°﹣sin30°+tan245°=____________.
17、如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,2),反比例函数
(x
0)的图象与BC,AB分别交于D,E,BD=
.
(1)求反比例函数关系式和点E的坐标;
(2)写出DE与AC的位置关系并说明理由;
(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.
18、求二次函数的顶点坐标,说出此函数的三条性质
19、某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量(件)与销售单价
(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:
销售单价 | 40 | 60 | 80 |
日销售量 | 80 | 60 | 40 |
(1)求公司销售该商品获得的最大日利润;
(2)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过元,在日销售量
(件)与销售单价
(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求
的值.
20、如图,抛物线y=x2+mx与直线y=-x+b 交于点A(2,0)和点B.
(1)求m和b的值;
(2)求点B的坐标,并结合图象写出不等式x2+mx>-x+b的解集;
(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有 一个公共点,直接写出点M的横坐标xM的取值范围.
21、如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求A,B,C三点的坐标.
(2)点M为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积.
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连结DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.
22、如图,某座山的顶部有一座通讯塔
,且点A,B,C在同一条直线上.从地面P处测得塔顶C的仰角为
,测得塔底B的仰角为
.已知通讯塔
的高度为
,求这座山
的高度(结果取整数).参考数据:
,
.
23、如图,AB是⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB、DC的延长线交于点E,若BE=3,CE=3.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.
24、如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OD⊥AB于点O,分别交AC、CF于点E、D,且CF是⊙O的切线.
(1)求证:DE=DC;
(2)若⊙O的半径为5,OE=1,求DE的长.