1、A、B两地相距900千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是( )
A.4小时
B.4.5小时
C.5小时
D.4小时或5小时
2、在这五个数中,负数共有( )
A.2个 B.3个 C.4个 D.5个
3、古代名菩《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之?意思是:两匹马从同一地点出发,跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为()
A.240x=150x+12×150
B.240x=150x﹣12×150
C.240(x﹣12)=150x+150
D.240x+150x=12×150
4、若a,b为实数,且|a+1|+=0,则(ab)2018的值是( )
A. 0 B. 1 C. ﹣1 D. ±1
5、下列方程变形正确的是( )
A.由,得
B.由
,得
C.由,得
D.由
,得
6、如果水位下降5m记作-5m,那么水位上升3m记作( )
A.-2m
B.8m
C.-8m
D.+3m
7、如图.已知点是射线
上一动点(不与点
重合),
,若
为钝角三角形,则
的取值范围是( )
A.
B.
C.或
D.或
8、若|a|=7,|b|=3且a<0,b>0,则a+b=( )
A.10
B.-10
C.4
D.-4
9、在0,-2.1, 5,-π, 2.3这几个数中,负数有( )个.
A.1 B.2 C.3 D.4
10、若,则下列等式成立的是( )
A.
B.
C.
D.
11、下列说法中,错误的是( )
A. 经过一点可以作无数条直线
B. 经过两点只能作一条直线
C. 射线AB和射线BA是同一条射段
D. 两点之间,线段最短
12、某班进行个人投篮比赛,有人未进球,有
人各进
球,有
人各进
球,有
人各进
球,没有人进
球以上.小莹和一些同学各进
球,小亮和一些同学各进
球.已知进
球或
球以上的同学平均每人进
球,进
球或
球以下的同学平均 每人进
球.如果设进
球的为
人,进
球的为
人,则可列方程组为( )
A.
B.
C.
D.
13、计算:﹣33=_____.
14、某校七年级学生中有一个学习小组整理了“有理数”一章的结构图,如图所示,则你认为表示_________;
表示________.
15、在某地区,夏季高山上的温度从山脚起每升高100米平均降低0.8℃,已知山脚的温度是24℃,山顶的温度是4℃,试问这座山的高度是__________米.
16、长沙某天白天气温最高为,夜间最低为
,则长沙当天的最大温差为________
.
17、如图,从以下给出的五个条件中选取一个:
(1);(2)
;(3)
;(4)
;(5)
.
恰能判断的概率是___________________.
18、一条船顺流航行,每小时行20km;逆流航行,每小时行16km.求轮船在静水中的速度为___________水的流速为________________
19、在市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,下列结论中正确的是______.(请将正确的序号填在横线上)
①这次比赛的全程是500米
②乙队先到达终点
③比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快
④乙与甲相遇时乙的速度是375米/分钟
⑤在1.8分钟时,乙队追上了甲队
20、某地冬季一天中午的气温是5 ℃,下午上升到7 ℃,受冷空气影响,到夜间气温最低时又下降了9 ℃,则这天夜间的最低气温是________ ℃.
21、如图,直线MN与直线PQ相交于点O,点A在直线PQ上运动,点B在直线MN上运动.
(1)如图1,若∠AOB=80°,AE、BE分别是∠BAO和∠ABO的角平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的理由;若不发生变化,试求出∠AEB的度数;
(2)如图2,若∠AOB=90°,点D、C分别是∠PAB和∠ABM的角平分线上的两点,AD、BC交于点F.∠ADC和∠BCD的角平分线相交于点E,
①点AB在运动的过程中,∠F的大小是否会发生变化?若发生变化,请说明变化的理由;若不发生变化,请求其度数.
②点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明变化的理由;若不发生变化,请求其度数.
22、从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)探究:上述操作能验证的等式是 ;(请选择正确的一个)
A.a2-2ab+b2=(a-b)2 B.a2-b2=(a+b)(a-b)
C.a2+ab=a(a+b)
(2)应用:利用你从(1)选出的等式,完成下列各题:
①已知9x2-4y2=24,3x+2y=6,求3x-2y的值;
②计算:
23、(1)计算:.
(2)化简:.
24、“双十一”期间,商家将本店某款甜品蛋糕按照不同口味以“套餐”的形式优惠出售,该款甜品蛋糕的商品详情、订单页面可供选择的套餐搭配类型及相应价格如图所示:
(1)结合图中信息,若慕斯、芝士和黑巧口味的甜品蛋糕的单价分别为、
、
元
盒
,直接写出
的值;
(2)芃芃个人偏爱慕斯口味,为照顾朋友们的口味,她选择购买、
两款套餐,订购数量共计
份,结算金额
元,请问芃芃购买
套餐和
套餐各多少份?
25、据市场调查,个体服装店做生意,只要销售价高出进货价的20%便可赢利;假如你准备买1件标价为200元的服装.
(1)个体服装店若以高出进价的50%要价,你应怎样还价?
(2)个体服装店若以高出进价的100%要价,你应怎样还价?
(3)个体服装店若以高出进价的50%~100%要价,你应该在什么范围内还价?
26、对任意有理数a、b,规定一种新运算“⊗”,使a⊗b=3a﹣2b,例如:5⊗(﹣3)=3×5﹣2×(﹣3)=21.若(2x﹣1)⊗(x﹣2)=﹣3,求x的值.