1、工地上甲、乙两人用如图所示的方法将带挂钩的重物抬起。不可伸长的轻绳两端分别固定于刚性直杆上的A、B两点,轻绳长度大于A、B两点间的距离。现将挂钩挂在轻绳上,乙站直后将杆的一端搭在肩上并保持不动,甲蹲下后将杆的另一端搭在肩上,此时物体刚要离开地面,然后甲缓慢站起至站直。已知甲的身高比乙高,不计挂钩与绳之间的摩擦。在甲缓慢站起至站直的过程中,下列说法正确的是( )
A.轻绳的张力大小一直不变
B.轻绳的张力先变大后变小
C.轻绳的张力先变小后变大
D.轻绳对挂钩的作用力先变大后变小
2、歼-20战斗机安装了我国自主研制的矢量发动机,能够在不改变飞机飞行方向的情况下,通过转动尾喷口方向改变推力的方向,使战斗机获得很多优异的飞行性能。已知在歼20战斗机沿水平方向超音速匀速巡航时升阻比(垂直机身向上的升力和平行机身向后的阻力之比)为。飞机的重力为G,使飞机实现节油巡航模式的最小推力是( )
A.G
B.
C.
D.
3、如图所示,用控制变量法可以研究影响平行板电容器电容的因素。设两极板正对面积为S,极板间的距离为d,静电计指针偏角为θ。实验中,极板所带电荷量不变,若( )
A.保持S不变,减小d,则θ变大
B.保持S不变,增大d,则θ变小
C.保持d不变,减小S,则θ变小
D.保持d不变,减小S,则θ变大
4、如图甲所示,和
为两相干波源,振动方向均垂直于纸面,产生的简谐横波波长均为λ,Р点是两列波相遇区域中的一点,已知Р点到两波源的距离分别为
,
,两列波在Р点干涉相消。若
的振动图象如图乙所示,则
的振动方程可能为( )
A.(cm)
B.(cm)
C.(cm)
D.(cm)
5、如图所示,一根粗糙的水平横杆上套有A、B两个轻环,系在两环上的等长细绳拴住的书本处于静止状态,现将两环距离变小后书本仍处于静止状态,则
A.杆对A环的支持力变大
B.B环对杆的摩擦力变小
C.杆对A环的力不变
D.与B环相连的细绳对书本的拉力变大
6、2021年7月,我国将发射全球首颗搭载主动激光雷达二氧化碳探测的大气环境监测卫星。在航天领域中,悬绳卫星是一种新兴技术,它要求两颗卫星在不同轨道上同向运行,且两颗卫星与地心连线始终在一条直线上、如图所示,卫星乙的轨道半径为r,甲、乙两颗卫星的质量均为m,悬绳的长度为r,其重力不计,地球质量为M,引力常量为G,则两颗卫星间悬绳的张力为( )
A.
B.
C.
D.
7、如图所示,甲、乙是两个完全相同的闭合导线线框,a、b是边界范围、磁感应强度大小和方向都相同的两个匀强磁场区域,只是a区域到地面的高度比b高一些。甲、乙线框分别从磁场区域的正上方距地面相同高度处同时由静止释放,穿过磁场后落到地面。下落过程中线框平面始终保持与磁场方向垂直。以下说法正确的是( )
A.甲乙两框同时落地
B.乙框比甲框先落地
C.落地时甲乙两框速度相同
D.穿过磁场的过程中甲线框中通过的电荷量小于乙线框
8、设地球的半径为R0,质量为m的卫星在距地面R0高处做匀速圆周运动,地面的重力加速度为g,则下列说法正确的是( )
A.卫星的角速度为
B.卫星的线速度为
C.卫星的加速度为
D.卫星的周期为
9、如图甲所示为探究电磁驱动的实验装置。某个铝笼置于U形磁铁的两个磁极间,铝笼可以绕支点自由转动,其截面图如图乙所示。开始时,铝笼和磁铁均静止,转动磁铁,会发现铝笼也会跟着发生转动,下列说法正确的是( )
A.铝笼是因为受到安培力而转动的
B.铝笼转动的速度的大小和方向与磁铁相同
C.磁铁从图乙位置开始转动时,铝笼截面中的感应电流的方向为a→d→c→b→a
D.当磁铁停止转动后,如果忽略空气阻力和摩擦阻力,铝笼将保持匀速转动
10、如图所示,将悬挂在O点的铜球从方形匀强磁场区域左侧一定高度处由静止释放,磁场区域的左右边界处于竖直方向,不考虑空气阻力,则( )
A.铜球在左右两侧摆起的最大高度相同
B.铜球最终将静止在O点正下方
C.铜球运动到最低点时受到的安培力最大
D.铜球向右进入磁场的过程中,受到的安培力方向水平向左
11、如图(a)所示,光滑绝缘水平面上有甲、乙两个带电小球。t=0时,乙球以6m/s的初速度向静止的甲球运动。之后,它们仅在电场力的作用下沿同一直线运动(整个运动过程中没有接触)。它们运动的v-t图象分别如图(b)中甲、乙两曲线所示。由图线可知( )
A.甲、乙两球一定带异号电荷
B.t1时刻两球的电势能最小
C.0~t2时间内,两球间的静电力先增大后减小
D.0~t3时间内,甲球的动能一直增大,乙球的动能一直减小
12、如图所示,理想变压器原、副线圈接有额定电压均为20V的灯泡A和B,当输入u=220sin100πt(V)的交流电时,两灯泡均能正常发光,假设灯泡不会被烧坏,下列说法正确的是( )
A.原、副线圈匝数比为11:1
B.原、副线圈中电流的频率比为10:1
C.当滑动变阻器的滑片向上滑少许时,灯泡B变暗
D.当滑动变阻器的滑片向下滑少许时,灯泡A变亮
13、如图所示,质量为M的物块放置在光滑水平桌面上,右侧连接一固定于天花板与竖直方向成θ=45°的轻绳,左侧通过一与竖直方向成θ=45°跨过光滑定滑轮的轻绳与一竖直轻弹簧相连。现将质量为m的钩码挂于弹簧下端,当弹簧处于原长时,将钩码由静止释放,当钩码下降到最低点时(未着地),物块对水平桌面的压力恰好为零。轻绳不可伸长,弹簧劲度系数为k且始终在弹性限度内,物块始终处于静止状态,重力加速度为g。以下判断正确的是( )
A.钩码向下一直做加速运动
B.钩码向下运动的最大距离为
C.M=m
D.M=m
14、OMN为玻璃等腰三棱镜的横截面,ON=OM,a、b两束可见单色光(关于OO′)对称,从空气垂直射入棱镜底面 MN,在棱镜侧面 OM、ON上反射和折射的情况如图所示,则下列说法正确的是( )
A.在棱镜中a光束的折射率大于b光束的折射率
B.在棱镜中,a光束的传播速度小于b光束的传播速度
C.a、b 两束光用同样的装置分别做单缝衍射实验,a光束比b光束的中央亮条纹宽
D.a、b两束光用同样的装置分别做双缝干涉实验,a光束比b光束的条纹间距小
15、如图所示,某健身者右手拉着抓把沿图示位置A水平缓慢移动到位置B,他始终保持静止不计绳子质量,忽略绳子和重物与所有构件间的摩擦,则重物下移过程( )
A.绳子的拉力逐渐增大
B.该健身者所受合力逐渐减小
C.该健身者对地面的压力不变
D.该健身者对地面的摩擦力逐渐减小
16、如图所示,竖直平面内半径的圆弧AO与半径
的圆弧BO在最低点C相切。两段光滑的直轨道的一端在O点平滑连接,另一端分别在两圆弧上且等高。一个小球从左侧直轨道的最高点A由静止开始沿直轨道下滑,经过O点后沿右侧直轨道上滑至最高点B,不考虑小球在O点的机械能损失,重力加速度g取10m/s。则在此过程中小球运动的时间为( )
A.1.5 s
B.2.0 s
C.3.0 s
D.3.5 s
17、1697年牛顿、伯努利等解出了“最速降线”的轨迹方程。如图所示,小球在竖直平面内从静止开始由P点运动到Q点,沿PMQ光滑轨道时间最短(该轨道曲线为最速降线)。PNQ为倾斜光滑直轨道,小球从P点由静止开始沿两轨道运动到Q点时,速度方向与水平方向间夹角相等。M点为PMQ轨道的最低点,M、N两点在同一竖直线上。则( )
A.小球沿两轨道运动到Q点时的速度大小不同
B.小球在M点受到的弹力小于在N点受到的弹力
C.小球在PM间任意位置加速度都不可能沿水平方向
D.小球从N到Q的时间大于从M到Q的时间
18、放射性元素钚()是重要的核原料,其半衰期为88年,一个静止的钚238衰变时放出α粒子和γ光子,生成原子核X,已知钚238、α粒子和原子核X的质量分别为
、
、
,普朗克常量为
,真空中的光速为c,则下列说法正确的是( )
A.X的比结合能比钚238的比结合能小
B.将钚238用铅盒密封,可减缓其衰变速度
C.钚238衰变时放出的γ光子具有能量,但是没有动量
D.钚238衰变放出的γ光子的频率小于
19、类比是一种常用的研究方法.如图所示,O为椭圆ABCD的左焦点,在O点固定一个正电荷,某一电子P正好沿椭圆ABCD运动,A、C为长轴端点,B、D为短轴端点,这种运动与太阳系内行星的运动规律类似.下列说法中正确的是( )
A.电子在A点的线速度小于在C点的线速度
B.电子在A点的加速度小于在C点的加速度
C.电子由A运动到C的过程中电场力做正功,电势能减小
D.电子由A运动到C的过程中电场力做负功,电势能增加
20、如图是一边长为L的正方形金属框放在光滑水平面上的俯视图,虚线右侧存在竖直向上的匀强磁场.金属矿电阻为R,时刻,金属框在水平拉力F作用下从图示位置由静止开始,以垂直于磁场边界的恒定加速度进入磁场,
时刻线框全部进入磁场。则
时间内金属框中电流i、电量q、运动速度v和拉力F随位移x或时间t变化关系可能正确的是( )
A.
B.
C.
D.
21、如图所示,已知电源电动势E=6V,内阻r=3Ω,定值电阻R0=5Ω,滑动变阻器的最大阻值为10Ω,当滑动变阻器R调节为__________Ω时,滑动变阻器R消耗的电功率最大;当滑动变阻器R调节为___________Ω时电源的输出功率最大。
22、某实验小组利用光电门、气垫导轨等验证机械能守恒定律,实验装置如图甲。让带遮光片的物块从气垫导轨上某处由静止滑下,若测得物块通过A、B光电门时的速度分别为v1和v2,AB之间的距离为L,料面的倾角为θ,重力加速度为g
(1)图乙表示示用螺旋测微器测量物块上遮光板的宽度为d,由此读出d=__________mm;
(2)若实验数据满足关系式_________(用所给物理量表示),则验证了物块下滑过程中机械能守恒;
(3)本实验中误差的主要来源是_____________________而造成物块机械能的损失。
23、如图所示为一个摆长m的单摆。①若摆角
,不计一切阻力,则该单摆的振动可视为______(选填“简谐运动”或“阻尼振动”),其振动周期为______s;②实际情况下,在某次实验中,将该单摆的摆球拉到图中A点(摆绳绷直,摆角
)由静止释放后,发现摆球在竖直面内完成10次全振动达到右侧最高点的位置B比A低了
cm。若摆球质量
kg,每完成10次全振动给它补充一次能量,使摆球瞬间由B点恰好回到A点,则从释放摆球开始计时,在
s内总共应补充的能量为______J(保留2位小数)。(g取10m/s2,
)。
24、轻质活塞将一定质量的气体封闭在薄壁气缸内,活塞横截面积为S,气缸质量为m。开始时活塞处于气缸正中间,现用竖直向上的力提活塞使得气缸被提离地面,如图所示。当气缸内气体的压强为_______时,气缸将获得最大加速度,气缸的最大加速度为_______。(外界大气压强为)
25、甲、乙两列波均向右传播,在相遇处各自的波形图如图所示,已知两列波为同一性质的波,在同种介质中传播,则两列波的频率之比为__________,10m处质点的速度方向__________(填“向上”或“向下”)。
26、用蒸锅蒸煮食物时,锅盖有时候被锅内气体向上顶起而向外放气。从蒸锅开始加热到锅盖刚要被顶起,锅内气体内能___________ (选填“增大”、“减小”或“不变”);若不考虑放气前后锅内气体温度变化,则放气后锅内气体相比于放气前单位时间内对器壁单位面积的撞击次数将___________ (选填“增多”、“减少”或“不变”)。
27、某物理学习小组做“探究弹力和弹簧伸长的关系”的实验:该学习小组成员利用所学知识测出了一轻质弹簧的原长l0和弹簧的劲度系数,该轻质弹簧一端固定于深度为h=0.25m、且开口向右的光滑小筒中(没有外力作用时弹簧的右端位于筒内),如图甲所示,该小组成员通过改变所挂钩码的个数,测出距筒口右端弹簧的对应长度l,作出图乙所示的F-l图线,则弹簧的劲度系数k=________N/m,弹簧的原长l0=______cm。
28、2021年是建党100周年,某玩具厂家为此专门设计了一个字型为“100”的模型玩具,如图所示,三个数字竖直放置,高度均为2R,数字右边固定一个横截面为长方形的球框GHIJ,球框GH、IJ两边的长为l,底边HI的长为2l、数字底端B、C、F和球框上端G、J均在同一水平线上。左、右两个“0”字形轨道分别为半径为R的圆管道和圆轨道,一质量为m的小球P(可视为质点)从“1”字的上端A点以速度v0竖直向下进入轨道,经过三个数字轨道后从G点水平向右飞出,最终落入球框。已知m = 0.1kg、R = 0.5m、l = 0.8m,BC长为d = 1m,小球P在BC段运动时所受阻力为其重力的0.2,轨道其他部分的阻力均不计、忽略空气阻力,重力加速度g = 10m/s2。假设小球P与球框右边IJ发生的是弹性碰撞,且碰撞前后小球的速度方向与水平方向的夹角相等,小球P落到底边HI上时速度立即变为零。
(1)若v0= 3m/s,求小球P经过圆管道最高点D时的速度大小及对管道的作用力;
(2)若在CF段的中点静置有一个质量为2m的小球Q,已知小球P、Q间发生正碰。小明认为通过调节v0,有可能使小球P、Q在碰后恰好能分别通过圆管道和圆轨道的最高点D、E,请你通过计算说明是否存在这种可能性;
(3)要使小球P在不脱离数字轨道且在不触碰到GH边的情况下最终落入框中,求v0的取值范围。
29、如图所示,以坐标原点O为圆心、半径为R区域内存在方向垂直xOy平面向外的强场,磁场左侧有一平行y轴放置的荧光屏,相距为d的足够大金属薄板K、A平行于x轴正对放置,K板中央有一小孔P,K板与磁场边界想切于P点,K、A两板间加有恒定电压,K板电势高于A板电势,紧挨A板内侧有一长为3d的线状电子源,其中点正对P孔。电子源可以沿xOy平面向各个力尚发射速率均为v0的电子,沿y轴进入磁场的电子,经磁场偏转后垂直打在荧光屏上。已知电子的质量为m,电荷量为e,磁场磁感应强度,不计电子重力及它们间的相互作用力。求:
(1)K、A极板间的电压U;
(2)所发射的电子能进入P孔的电子源的长度l;
(3)所有达到荧光屏的电子中在磁场中运动最短时间tmin。
30、如图所示,水平传送带以v=2m/s的速度沿顺时针匀速转动,将质量为M=1kg的木块轻放在传送带的左端A,在木块随传送带一起匀速向右运动到某一位置时,一个质量为m=20g,速度大小为v1=400m/s的子弹水平向左射入木块,并从木块上穿过,穿过木块后子弹的速度大小为v2=50m/s,此后木块刚好从A端滑离传送带,已知木块与传送带间的动摩擦因数为0.5,不计子弹穿过木块所用的时间,重力加速度g=10m/s2,求:
(1)子弹击中木块前,木块在传送带上运动的时间;
(2)全过程中木块因与传送带摩擦产生的热量。
31、为寻找可靠的航天动力装置,科学家们正持续进行太阳帆推进器和离子推进器的研究。太阳帆推进器是利用太阳光作用在太阳帆的压力提供动力,离子推进器则是利用电场加速后的离子气体的反冲作用加速航天器。
(1)由量子理论可知每个光子的动量为(h为普朗克常量,
为光子的波长),光子的能量为
为光子的频率),调整太阳帆使太阳光垂直照射,已知真空中光速为c,光子的频率v,普朗克常量h,太阳帆面积为S,时间t内太阳光垂直照射到太阳帆每平方米面积上的太阳光能为E,宇宙飞船的质量为M,所有光子照射到太阳帆上后全部被等速率反射,求:
①时间t内作用在太阳帆的光子个数N;
②在太阳光压下宇宙飞船的加速度a的大小。
(2)离子推进器的原理如图所示:进入电离室的气体被电离,其中正离子飘入电极A、B之间的匀强电场(离子初速度忽略不计),A,B间电压为U,使正离子加速形成离子束,在加速正离子束的过程中所消耗的功率为P,推进器获得的恒定推力为F.为提高能量的转换效率,即要使尽量大,请通过论证说明可行的方案。设正离子质量为m,电荷量为q。
32、1665年,就读于剑桥大学的牛顿回到乡下躲避鼠疫,他利用这个宁静的时间思考了“是什么力量使得行星围绕太阳运转,苹果为什么会落到地上而不是天上”等问题,在此基础上他提出了万有引力定律,为经典力学体系的建立打下了坚实的基础。
(1)将行星绕太阳的运动简化成匀速圆周运动,应用牛顿运动定律和开普勒第三定律(,其中r为行星中心到太阳中心间的距离,T为行星运动的周期,k为常数)等,推导行星和太阳之间的引力满足
,其中m为行星的质量,M为太阳的质量,G是比例常数。
(2)上面(1)的推导是源于开普勒行星运动定律,因此它只适用于行星与太阳之间的力,牛顿在此基础上又向前走了一大步,提出了任何两个质点之间都存在引力,且都满足(1)中的表达式。在牛顿时代已经能比较精确地测定:月球轨道半径r、月球公转周期T、地球半径R、地球表面的重力加速度g。若维持月球绕地球运动的力与使得苹果下落的力真是同一种力,请求出上述4个量应满足的关系。
(3)2019年4月10日人类公布了拍摄到的首张黑洞的照片。黑洞密度极大,质量极大,半径很小,以最快速度传播的光(光在真空中的速度大小为c)都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在。严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用经典力学体系预言过黑洞的存在。我们知道,在经典力学体系中,当两个质量分别为m1、m2的质点相距为r时也会具有势能,称之为引力势能,其大小为(规定无穷远处势能为零)。假定黑洞为一个质量分布均匀的球形天体,请你利用以上信息,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R最大不能超过多少?