广西防城港2025届高一数学上册一月考试题

考试时间: 90分钟 满分: 160
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共20题,共 100分)
  • 1、已知不等式的解集是,则下列四个命题:

    ③ 若不等式的解集为,则

    ④ 若不等式的解集为,且,则.

    其中真命题的个数是(   

    A.1

    B.2

    C.3

    D.4

  • 2、函数上是(       ).

    A.增函数

    B.减函数

    C.先增后减

    D.先减后增

  • 3、”的一个充分条件可以是(       

    A.

    B.

    C.

    D.

  • 4、设非空集合满足,则下列选项正确的是(       

    A.,有

    B.,有

    C.,使得

    D.,使得

  • 5、设集合

    A.   B.   C.   D.

  • 6、已知定义在上的函数满足,若对任意正数都有,则的取值范围是(  

    A. B. C. D.

  • 7、已知,函数在区间上单调递减,则的取值范围是(   )

    A. B. C. D.

  • 8、命题“”的否定是( )

    A.

    B.

    C.

    D.

  • 9、设复数是虚数单位),则复数       

    A.

    B.

    C.

    D.

  • 10、若复数,则       

    A.1

    B.3

    C.

    D.5

  • 11、函数的零点个数为

    A.     B. C. D.

     

  • 12、若关于的不等式上有解,则实数的取值范围是

    A.

    B.

    C.

    D.

  • 13、已知函数满足:当时,,且当时,;当时,).若函数的图象上关于原点对称的点恰好有4对,则的值是( )

    A.625

    B.9

    C.4

    D.64

  • 14、已知,将图象向左平移个单位()得到函数的图象,函数的一个对称轴为,则下列说法正确的是( )

    A.最小正周期为

    B.为奇函数

    C.

    D.

  • 15、若复数满足,其中i为虚数单位,则复数的共轭复数  

    A. B. C. D.

  • 16、是两条直线,是两个平面,则的一个充分条件是(  

    A. B.

    C. D.

  • 17、,则的大小关系为(

    A. B. C. D.

  • 18、,则“”是“”的

    A.充分不必要条件

    B.必要而不充分条件

    C.充分必要条件

    D.既不充分也不必要条件

  • 19、,且,则下列不等式成立的是( )

    A.

    B.

    C.

    D.

  • 20、设等差数列的前n项和为,若,则

    A. 8   B. 12   C. 16   D. 20

     

二、填空题 (共6题,共 30分)
  • 21、设双曲线的方程为,过抛物线的焦点和点的直线为.若的一条渐近线与平行,另一条渐近线与垂直,则双曲线的方程为_________.

  • 22、已知函数且函数在定义域内恰有三个不同的零点,则实数的取值范围是_________.

  • 23、已知实数满足,则的最小值为________________

  • 24、已知复数,则|__________.

  • 25、若正方体的表面积为24,则这个正方体的外接球的表面积为_______

  • 26、某三棱锥的三视图如图所示,则该三棱锥的体积为_______.

       

三、解答题 (共6题,共 30分)
  • 27、已知函数.

    (1)当时,求的极值;

    (2)若,求的取值范围.

  • 28、北极燕鸥是已知的鸟类中迁徙路线最长的,属于燕鸥属的一种海鸟.科学家经过测量发现北极燕鸥的飞行速度(单位:)满足方程,其中表示北极燕鸥每分钟耗氧量的单位数,表示测量过程中北极燕鸥每分钟的耗氧偏差.(取

    (1)当北极燕鸥每分钟的耗氧量为个单位时,它的飞行速度为,求此时的值;

    (2)当甲、乙两只北极燕鸥速度相同时,甲北极燕鸥每分钟的耗氧量偏差是乙北极燕鸥每分钟的耗氧偏差的倍,试问甲北极燕鸥每分钟的耗氧量是乙北极燕鸥每分钟耗氧量的多少倍?

  • 29、已知数列{an}中,a1=3,nN*.

    (1)求数列{an}的通项公式;

    (2)求数列{an}的前n项和Sn.

  • 30、已知矩阵的逆矩阵.求曲线在矩阵所对应的线性变换作用下所得到的曲线方程.

  • 31、如图,正三棱柱ABCA1B1C1的所有棱长都为2,DCC1的中点.

    (1)求证:AB1⊥平面A1BD

    (2)求直线A1C1与平面A1BD所成角的正弦值;

    (3)求平面A1BD与平面A1DC1的夹角的正弦值.

  • 32、对于数列,若存在正数,使得对任意,都满足,则称数列符合“条件”.

    (1)试判断公差为2的等差数列是否符合“条件”?

    (2)若首项为1,公比为的正项等比数列符合“条件”.求的范围;

    (3)在(2)的条件下,记数列的前项和为,证明:存在正数,使得数列符合“条件”.

查看答案
下载试卷
得分 160
题数 32

类型 月考试卷
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
©2022 zidianyun.com ·