桃园2024-2025学年第二学期期末教学质量检测试题(卷)高二数学

考试时间: 90分钟 满分: 150
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共15题,共 75分)
  • 1、正方体棱长为2MN分别是的中点,动点P在正方形内运动,且的长度范围为(   )

    A. B. C. D.

  • 2、正方体的棱长为3,为空间一点,为底面内一点,且满足,异面直线所成角为30°,则线段长度最小值为(       

    A.

    B.

    C.

    D.

  • 3、已知直线与函数的图象分别交于点,则的最小值为(       

    A.8

    B.10

    C.12

    D.16

  • 4、世界杯组委会预测2018俄罗斯世界杯中,巴西队获得名次可用随机变量表示,的概率分布规律为,其中为常数,则的值为 (   )

    A.   B.   C.   D.

  • 5、已知集合,则  

    A. B. C. D.

  • 6、中,角的对边分别为,若的面积为,则的最小值为

    A.   B.   C.   D.

     

  • 7、已知双曲线的左右焦点分别为,其离心率为,过坐标原点的直线交双曲线A两点,为双曲线上异于A的一动点,设的斜率分别为,则的最小值为(       )

    A.

    B.

    C.

    D.

  • 8、某几何体的三视图都是全等图形,则该几何体一定是

    A.球体   B.长方体 C.三棱锥 D.圆锥

     

  • 9、执行如图所示的程序框图,运行相应的程序,若输入的值为 2,则输出的值为

    A.64

    B.84

    C.340

    D.1364

  • 10、已知方程表示一个焦点在轴上的椭圆,则实数的取值范围为(       

    A.

    B.

    C.

    D.

  • 11、使不等式成立的充分不必要条件是(

    A B  

    C.  D.

     

  • 12、在某种信息传输过程中,用4个数字的一个排列数字允许重复表示一个信息,不同排列表示

    不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为

    A.10 B.11   C.12   D.15

     

  • 13、若点和点分别为椭圆的中心和左焦点,点为椭圆上点的任意一点,则的最大值为(  

    A. B. C. D.

  • 14、已知定义在上的函数满足,其中是函数的导函数,若,则实数的取值范围为(       

    A.

    B.

    C.

    D.

  • 15、若等比数列的前项和,且 ,则

    A.   B.   C.   D.

     

二、填空题 (共10题,共 50分)
  • 16、________

     

  • 17、在一次高台跳水比赛中,某运动员在时的重心相对于水面的高度(单位:m)是,则该运动员在时的瞬时速度为________m/s.

  • 18、直线与曲线为参数)的交点个数为__________.

  • 19、已知在定义域上单调递减,则实数a的取值范围是______.

  • 20、从点(2,3)射出的光线沿与直线x-2y=0平行的直线射到y轴上,则经y轴反射的光线所在的直线方程为_____________

  • 21、 中,内角所对的边分别为已知的面积则角的大小为_________

     

  • 22、若双曲线C的焦距长为8,则该双曲线的渐近线方程为______

  • 23、记等差数列的前项和为,已知,则_______.

  • 24、分别是椭圆的左,右焦点,为椭圆上任一点,点的坐标为,则| |+||的最大值为_______

     

  • 25、如图所示,圆锥的轴截面是边长为2的正三角形,的中点,的中点,则直线所成角的大小为____________.

三、解答题 (共5题,共 25分)
  • 26、已知函数,其图象的相邻对称轴之间的距离为,且直线是它的一条对称轴.

    (1)求实数的值;

    (2)设函数,求在区间上的值域.

     

  • 27、已知函数,其中为常数且,在处取得极值.

    1)当时,求的单调区间;

    2)若上的最大值为,求的值.

  • 28、已知椭圆的左,右焦点为,左,右顶点为,过点

    直线分别交椭圆于点.

    (1)设动点,满足,求点的轨迹方程;

    (2)当时,求点的坐标;

    (3)设,求证:直线轴上的定点.

     

  • 29、如图,已知曲线,曲线的左右焦点是,且也是的焦点,点P的在第一象限内的公共点且,过的直线l分别与曲线交于点ABMN

    1)求点P的坐标以及的方程;

    2)若面积分别是,求的取值范围.

  • 30、已知数列是公差为的等差数列,数列是公比为qq>0)的等比数列,且.

    (1)求数列的通项公式;

    (2)设,求数列的前项和.

查看答案
下载试卷
得分 150
题数 30

类型 期末考试
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
©2022 zidianyun.com ·