1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、硫及其化合物广泛存在于自然界中。
(1)四硫富瓦烯分子结构如图所示,其碳原子杂化轨道类型为_________,根据电子云的重叠方式其含有的共价键类型为___________,1mol四硫富瓦烯中含有σ键数目为__________。
(2)煅烧硫铁矿时发生的反应为FeS2+O2Fe2O3+SO2,所得产物SO2再经催化氧化生成SO3,SO3被水吸收生成硫酸。
①基态S原子存在____________对自旋方向相反的电子。
②离子化合物FeS2中,Fe2+的电子排布式为__________,与S22-互为电子体的离子是____________。
③气体SO3分子的空间构型为__________,中心原子阶层电子对数为____________。
(3)闪锌矿是一种自然界含Zn元素的矿物,其晶体结构属于立方晶体(如下图所示),Zn属于_______区元素,在立方ZnS晶体结构中S2-的配位数为______________,若立方ZnS晶体的密度为ρg·cm-3,晶胞参数a=______nm(列出计算式),晶胞中A、B的坐标分别为A(,
,
)、B(
,
,
),则C点的坐标为____________。
3、硼是一种奇特的元素,它来自超新星爆发和宇宙射线的散列辐射。
(1)写出BF3电子式___________,B与F形成共价键时,共用电子对偏向_____原子,判断依据是_________________。
(2)硼酸(H3BO3)在水中电离出阴离子[B(OH)4]-,请写出硼酸的电离方程式___________。
4、(1)已知:
物质 | 性质 |
质硬,熔点:3200℃,沸点:4820℃ | |
具有挥发性,熔点: |
的熔沸点明显高于
的原因是_______。
(2)六方氮化硼晶体结构(如下图)与石墨相似,都是混合型晶体。但六方氮化硼晶体不导电,原因是_______。
5、在空气中泄露的二氧化硫,会被氧化而形成硫酸雾或硫酸盐气溶胶,污染环境。工业上常用溶液吸收、活性炭还原等方法处理二氧化硫,以减小对空气的污染。
(1)写出用溶液吸收
的离子方程式____________。
(2)钠原子核外有______种能量不同的电子。写出硫原子最外层电子的轨道表示式____________。
(3)比
稳定,请用分子结构的知识简述其理由。__________________
6、自然界中存在大量的金属元素和非金属元素,它们在工农业生产中有着广泛的应用。
(1)纳米氧化亚铜(Cu2O)是一种用途广泛的光电材料,已知高温下Cu2O比CuO稳定。
①画出基态Cu原子的价电子轨道排布图____________;
②从核外电子排布角度解释高温下Cu2O比CuO更稳定的原因____________。
(2)CuSO4溶液常用作农药、电镀液等,向CuSO4溶液中滴加足量浓氨水,直至产生的沉淀恰好溶解,再向其中加入适量乙醇,可析出深蓝色的Cu(NH3)4SO4·H2O晶体。
①Cu(NH3)4SO4·H2O晶体中存在的化学键有____________(填字母序号)。
a.离子键 b.极性键 c.非极性键 d.配位键
②SO42—的立体构型是____________,其中S原子的杂化轨道类型是____________。
③已知NF3与NH3的空间构型都是三角锥形,但NF3不易与Cu2+形成配离子,其原因是__________________。
(3)NaCl和MgO都属于离子化合物,NaCl的熔点为801.3℃,MgO的熔点高达2800℃。造成两种晶体熔点差距的主要原因是____________。
(4)合成氨工业中,原料气(N2、H2及少量CO、NH3的混合气)在进入合成塔前常用醋酸二氨合铜(I)溶液来吸收原料气体中的CO(Ac-代表CH3COO-),该反应是:
[Cu(NH3)2]Ac+CO+NH3[Cu(NH3)3CO]Ac(醋酸羰基三氨合铜)(I) △H<0
①C、N、O三种元素的第一电离能由小到大的顺序为____________;
②配合物[Cu(NH3)3CO]Ac中心原子的配位数为_________。
(5)铜的化合物种类很多,右图是氯化亚铜的晶胞结构,已知晶胞的棱长为a cm,则氯化亚铜密度的计算式为:ρ=____________g/cm3(用NA表示阿伏加德罗常数)。
7、“三酸两碱”是最重要的无机化工产品,广泛用于国防、石油、纺织、冶金、食品等工业。“三酸”是指硝酸、硫酸和盐酸,“两碱”指烧碱和纯碱。回答下列问题:
(1)写出过量稀硝酸分别与“两碱”溶液反应的离子方程式:_______、_______。
(2)请将“三酸两碱”中所含位于第三周期的元素,按原子半径由大到小的顺序排列_______。
(3)氯的非金属性比硫____(填“强”或“弱”),请用两个事实说明你的结论____________。
(4)某烧碱溶液中含0.1molNaOH,向该溶液通入一定量CO2,充分反应后,将所得溶液低温蒸干,得到固体的组成可能有四种情况,分别是:①________;②Na2CO3;③________;④NaHCO3。若该固体溶于水,滴加过量盐酸,再将溶液蒸干,得到固体的质量是_______ g。
(5)将Na2CO3溶于水得到下列数据:
水 | Na2CO3 | 混合前温度 | 混合后温度 |
35mL | 3.2g | 20℃ | 24.3℃ |
Na2CO3溶于水_________(填“吸”或“放”)热,请从溶解过程热效应的角度加以解释___________。
8、(1)比较非金属性强弱:C______Cl(填“>”、“<”或“=”),用一个化学方程式说明:______。
(2)Mg2C3可以和水作用生成丙炔,试写出Mg2C3的电子式______。
(3)写出乙醇钠溶液中加入盐酸的化学方程式______。
9、香料G的一种合成工艺如下图所示:
核磁共振氢谱显示A有两种峰,且峰面积之比为1∶1。
已知:CH3CH2CH===CH2CH3CHBrCH===CH2
CH3CHO+CH3CHOCH3CHOHCH2CHOCH3CHOHCH2CHO
CH3CH===CHCHO+H2O
请回答下列问题:
(1)A的结简式为__________,G中官能团的名称为___________。
(2)检验M已完全转化为N的实验操作是____________________。
(3)有学生建议,将M→N的转化用KMnO4(H+)代替O2,老师认为不合理,原因是_______________。
(4)写出下列转化的化学方程式,并标出反应类型:
K→L:________________,反应类型:________。
(5)F是M的同系物,比M多一个碳原子。满足下列条件的F的同分异构体有________种。(不考虑立体异构)
①能发生银镜反应 ②能与溴的四氯化碳溶液加成 ③苯环上有2个对位取代基
(6)以丙烯和NBS试剂为原料制备甘油(丙三醇),请设计合成路线(其他无机原料任选)。________
请用以下方式表示:AB…
目标产物
10、实验室制取溴苯的装置如图所示。向二颈烧瓶中先滴入0.5 mL Br2,静置,经片刻诱导期后反应开始。再缓慢滴加其余的Br2, 维持体系微沸至Br2加完,70~ 80°C水浴15min。(诱导期:催化反应中形成过渡态且总反应速率为0的时期)反应结束后产品处理:
有关数据如下:
物质 | 苯 | 溴 | 溴苯 |
密度(g· cm-3) | 0.88 | 3.12 | 1.50 |
沸点/°C | 80 | 59 | 156 |
在水中的溶解性 | 不溶 | 微溶 | 不溶 |
回答下列问题:
(1)仪器a的名称是_____________________。
(2)溴苯的制备需在无水条件下进行,原因是________________。
(3)A装置盛装_______( 填试剂)用于检验诱导期已过,反应开始。
(4)当出现_____________ ( 填现象)时,证明反应已结束。
(5)产品后处理阶段,有机层I用10% NaOH溶液洗涤其离子反应方程式为________,有机层Ⅱ水洗的目的是____________。
(6)有机层Ⅲ经干燥后分离出纯净溴苯的操作名称是_______。
11、硝酸工业生产中的尾气可用纯碱溶液吸收,有关的化学反应为:
2NO2+Na2CO3→NaNO2+NaNO3+CO2↑ ①
NO+NO2+Na2CO3→2NaNO2+CO2↑ ②
(1)根据反应①,每产生22.4 L(标准状况下)CO2,吸收液质量将增加_____________g。
(2)配制1000 g质量分数为21.2%的纯碱吸收液,需Na2CO3·10H2O_____________g。
(3)现有1000 g质量分数为21.2%的纯碱吸收液,吸收硝酸工业尾气,每产生22.4 L(标准状况)CO2时,吸收液质量就增加44 g。
① 计算吸收液中NaNO2和NaNO3物质的量之比。
② 1000 g质量分数为21.2%的纯碱在20℃经充分吸收硝酸工业尾气后,蒸发掉688 g水,冷却到0℃,最多可析出NaNO2多少克?(0℃时,NaNO2的溶解度为71.2g/100g水)
12、2030年全球新能源动力电池镍消费量将达到2020年全球镍产量的近40%。碱式碳酸镍[NiCO3·2Ni(OH)2·xH2O]在工业上可作为制备其他含镍化合物的原料。工业上由某含镍废渣精矿(主要成分为NiO、Fe2O3,CuO、SiO2)为原料制备碱式碳酸镍的流程如图1所示。
已知:①25℃时,相关离子开始沉淀和完全沉淀的pH如表所示。
离子 | Ni2+ | Fe3+ | Cu2+ |
开始沉淀时的pH | 6.4 | 2.2 | 4.4 |
完全沉淀时的pH | 8.4 | 3.5 | 6.7 |
②25℃时,Ksp(NiS)=1.0×10-27,Ksp(CuS)=8.0×10-35
回答下列问题:
(1)滤渣I的主要成分为_______(填化学式)。
(2)“除杂1”时应利用加入的Na2CO3溶液调节溶液的pH范围为_______。
(3)“除杂2”时发生反应的离子方程式为NiS(s)+Cu2+(aq)CuS(s)+Ni2+(aq)。25℃时,该反应的化学平衡常数为_______;实验测得此工序中加入NiS的物质的量与“除杂1”所得溶液中Cu2+的物质的量之比、反应温度对“除杂2”所得滤渣中铜镍比的关系分别如图2和图3所示。
则最佳的加入NiS的物质的量与“除杂1”所得溶液中Cu2+的物质的量之比和反应温度分别为_______。
(4)“萃取”和“反萃取”的最终目的是富集获得含有_______(填化学式)的水溶液。
(5)“沉镍”时应控制温度为95℃,反应除生成NiCO3·2Ni(OH)2·xH2O外,还有一种无色气体生成。该气体为_______分子(填“极性”或“非极性”)。
(6)碱式碳酸镍可进一步转化制得镍氢电池。镍氢电池充电的工作原理为:Ni(OH)2+M=NiOOH+MH(M表示储氢金属或合金)。该电池充电过程中阴极的电极反应式为_______。
13、汽车尾气中含有CO、NOx等有害气体。对汽车加装尾气净化装置,可使有毒气体相互反应转化为无毒气体。
(1)已知:Ⅰ. 2CO(g) + O2(g) =2CO2(g) △H1 = -566kJ/mol
Ⅱ.N2(g) + O2(g) =2NO(g) △H2 = +181kJ/mol
Ⅲ.2CO(g) + 2NO(g) =2CO2(g)+ N2(g) △H3
①△H3= ___________,则反应Ⅲ在___________(填“高温”、“低温”或“任何温度”)下能自发进行。
②对于反应Ⅲ,改变某一条件,下列图像正确的是___________(填标号)
(2)某实验小组模拟上述净化过程,一定温度下,在2L的恒容密闭容器中加入等物质的量的NO(g)和CO(g),在一定条件下发生上述反应Ⅲ,测得一定时间内CO(g)和N2(g)的物质的量随温度变化如下表:
| T1℃ | T2℃ | |||||
0min | 5min | 10min | 15min | 20min | 25min | 30min | |
n(CO)/mol | 2.0 | 1.16 | 0.80 | 0.80 | 0.50 | 0.40 | 0.40 |
n(N2)/mol | 0 | 0.42 | 0.60 | 0.60 | 0.75 | 0.80 | 0.80 |
①T1℃时,0~5min内以NO(g)表示的反应速率v(NO)=___________mol·L-1·min-1
②15min后,其它条件不变,只改变温度,由表中数据变化判断T1___________T2(填“>”“<”或“=”)。理由为___________。
(3)实验测得v正= k正·c2(CO)·c2(NO),v逆= k逆·c(N2)·c2(CO2)(k正、k逆为速率常数,只与温度有关)。若在2L的恒容密闭容器中加入1molNO(g)和1mol CO(g),在T2下反应达到平衡时,k正 :k逆 =___________。