1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、部分弱酸的电离常数如下表:
弱酸 | HCOOH | HClO | H2CO3 | H2SO3 |
电离常数 (25℃) |
(1)同温同物质的量浓度的HCOONa(aq)与NaClO(aq)中pH大的是________。
(2)1molCl2与2molNa2CO3(aq)反应除生成NaCl外还有_______________(填化学式)。
(3)向一定量的NaHCO3(aq)中通入少量的SO2(g),反应的离子方程式为__________。亚硒酸(H2SeO3)也是一种二元弱酸,常温下是一种无色固体,易溶于水,有较强的氧化性。
3、甲醇作为基本的有机化工产品和环保动力燃料具有广阔的应用前景,二氧化碳加氢合成甲醇是合理利用二氧化碳的有效途径。由二氧化碳制备甲醇过程中可能涉及反应如下:
反应Ⅰ:CO2(g)+3H2(g)CH3OH(g)+H2O(g) △H1=-49.58KJ/mol
反应Ⅱ:CO2(g)+H2(g)CO(g)+H2O(g) △H2
反应Ⅲ:CO(g)+2H2(g)CH3OH(g) △H3=-90.77KJ/mol
回答下列问题:
(1)反应Ⅱ的△H2= ,反应Ⅲ自发进行条件是 (填“较低温”、“较高温”或“任意温度”)。
(2)在一定条件下3L恒容密闭容器中,充入一定量的H2和CO2仅发生反应Ⅰ,实验测得反应物在不同起始投入量下,体系中二氧化碳的平衡转化率与温度的关系曲线,如图1所示。
①氢气和二氧化碳的起始投入量以A和B两种方式投入:
A:n(H2)=3mol n(CO2)=1.5mol
B:n(H2)=3mol n(CO2)=2mol,
曲线Ⅰ代表哪种投入方式 (用A、B表示)
②在温度为500K的条件下,按照A方式充入3mol氢气和1.5mol二氧化碳,该反应10min后达到平衡:此温度下的平衡常数为 ;500K时,若在此容器中开始充入0.3mol氢气和0.9mol二氧化碳、0.6mol甲醇、xmol水蒸气,若使反应在开始时正向进行,则 x 应满足的条件是 。
(3)在恒温恒压密闭容器中,充入一定量的H2和CO2(假定仅发生反应I),反应过程中,能判断反应I已达到平衡状态的标志是
A.断裂3molH-H键,同时有3molH-O键形成
B.容器内的压强保持不变
C.容器中气体的平均摩尔质量不变
D.容器中气体的密度保持不变
(4)以甲醇、氧气为原料,100mL 0.15mol/LNaOH溶液为电解质设计成燃料电池,若放电时参与反应的氧气体积为336mL(标况)产生的气体全部被NaOH溶液吸收,则所得溶液中溶质的成分及物质的量之比为 ,溶液中各离子浓度由大到小的顺序 。
4、碳、硅两元素广泛存在于自然界中.请回答下列问题:
(1)基态14C原子的核外存在________对自旋方向相反的电子,硅原子的电子排布式为__________。
(2)晶体硅的结构与全刚石非常相似。晶体硅硅中硅原子的杂化方式为_______杂化;金刚石、晶体硅和金刚砂(碳化硅)的熔点由高到低的顺序为_____________。
(3)科学研究结果表明,碳的氧化物CO2能够与H2O借助子太阳能制备HCOOH。其反应原理如下:2CO2+2H2O=2HCOOH+O2,则生成的HCOOH分子中δ键和π键的个数比是_______。
(4)碳单质有多种形式,其中C60、石墨烯与金刚石晶体结构如图所示:
①C60、石墨烯与金刚石互为_________。
②C60形成的晶体是分子晶体,C60分子中含有12个五边形和20个六边形,碳与碳之间既有单键又有双键,已知C60分子所含的双键数为30,则C60分子中_______个C—C 键(多面体的顶点数、面数和棱边数的关系,遵循欧拉定理:顶点数+面数-棱边数=2)。在石墨烯晶体中,每个C原子连接______个六元环;在金刚石晶体中,每个C原子连接的最小环也为六元环,六元环屮最多有_______个C原子在同一平面。
③金刚石晶胞含有______个碳原子。若碳原子的半径为r,金刚石晶胞的边长为a,根据硬球接触模型,则r=______a,列式表示碳原子在晶胞中的空间占有率为_______(不要求计算结果)。
5、氮、氧、磷、铁是与生命活动密切相关的元素。回答下列问题:
(1)P的基态原子最外电子层具有的原子轨道数为 ,Fe3+比Fe2+稳定的原因是 。
(2)N、O、P三种元素第一电离能最大的是 ,电负性最大的是 。
(3)含氮化合物NH4SCN溶液是检验Fe3+的常用试剂,SCN-中C原子的杂化类型为 ,1mol SCN-中含π键的数目为 NA。
(4)某直链多磷酸钠的阴离子呈如图所示的无极单链状结构,其中磷氧四面体通过共有顶角氧原子相连,则该多磷酸钠的化学式为 。
(5)FeO、NiO的晶体结构均与氯化钠晶体结构相同、其中Fe2+和Ni2+的离子半径分别为7.8×10-2nm、6.9×10-2nm,则熔点FeO NiO(填“<”、“>”或“=”)原因是 。
(6)磷化硼是一种超硬耐磨的涂层材料,其晶胞结构如图所示。P原子与B原子的最近距离为acm,则磷化硼晶胞的边长为 cm。(用含a的代数式表示)
6、原电池原理的发现改变了人们的生活方式。
(1)如图所示装置中,片作_______(填“正极”或“负极”),Zn片上发生反应的电极反应式为_______;能证明化学能转化为电能的实验现象是_______。
(2)下列可通过原电池装置实现化学能转化为电能的反应是_______(填序号)。
①
②
7、高铁酸钾(K2FeO4,暗紫色固体),是一种新型、高效、多功能的水处理剂。完成下列填空:
(1)K2FeO4溶于水得到浅紫红色的溶液,且易水解,生成氧气和氢氧化铁。写出该水解反应的离子方程式_________;说明高铁酸钾做水处理剂的原理______。
(2)下图分别是1mol/L的K2FeO4溶液在不同pH和温度下c(FeO42-)随时间的变化曲线。
根据以上两图,说明配制K2FeO4溶液的注意事项______________。
8、硫、锌及其化合物用途非常广泛。回答下列问题:
(1)基态锌原子的价电子排布式为____________________;锌的第二电离能I2(Zn)小于铜的第二电离能I2(Cu),其原因是____________________________________。
(2)O和S处于同一主族。H2O及H2S中,中心原子的杂化方式相同,键长及键角如图所示。
①H2O分子中的键长比H2S中的键长短,其原因是___________________________。
②H2O分子中的键角∠HOH 比H2S分子中的键角∠HSH 大,其原因是_________________。
(3)单质硫与热的NaOH 浓溶液反应的产物之一为Na2S3。S32-的空间构型为_________,中心原子的杂化方式为_________________。
(4)噻吩( )广泛应用于合成医药、农药、染料工业。
①噻吩分子中含有_______个σ键,分子中的大π键可用符号表示,其中m代表参与形成大π键的原子数,n代表参与形成大π键的电子数(如苯分子中的大π键可表示为
),则噻吩分子中的大π键应表示为______________。
②噻吩的沸点为84 ℃,吡咯( )的沸点在129~131℃之间,后者沸点较高,其原因是__________________________________。
(5)硫化锌是一种半导体材料,其晶胞结构如图所示。
①已知A点的原子坐标参数为(0,0,0);B点的原子坐标参数为(,0,
),则C点的原子坐标参数为__________。
②硫化锌晶体的密度为4.05 g·cm-3,晶胞边长为a nm,设NA 为阿伏加德罗常数的数值,则a=_________(列出计算表达式即可)。
9、(1)已知咖啡酸的结构如图所示。关于咖啡酸的描述正确的是:(______)
A.分子式为C9H5O4
B.1 mol 咖啡酸最多可与5 mol 氢气发生加成反应
C.与溴水既能发生取代反应,又能发生加成反应
D.1 mol 咖啡酸最多可与3 mol Na2CO3发生反应
(2)A、B、C、D1、D2、E、F、G、H均为有机化合物,请根据下列图示回答问题。
(1)直链有机化合物A的结构简式是__________________;
(2)B中官能团的名称为___________,H中含氧官能团的结构简式为____________;
(3)①的反应试剂和反应条件是___________________,③的反应类型是_____________;
(4)B生成C的化学方程式是___________________;
D1或D2生成E的化学方程式是___________________;
(5)G可应用于医疗、爆破等,由F生成G的化学方程式是________________。
10、实验室以次氯酸盐和铁盐为原料制备少量的操作步骤如下:
Ⅰ.制备NaClO强碱性饱和溶液:
①将20mLNaOH溶液加入仪器b中,冷水浴冷却,通入搅拌,直至溶液变为黄绿色且有少量白色晶体析出为止(装置如下图所示)。
②将所得饱和NaClO倒入烧杯并置于冷水浴中,分几次加入20gNaOH固体并不断搅拌,过滤,得NaClO强碱性饱和溶液。
(1)甲装置中a管的作用是_______。
(2)写出甲装置中反应的化学方程式_______。
(3)石灰乳的作用是_______。
(4)反应过程中用冷水浴冷却的原因是_______。
Ⅱ.合成
①称取5.05g(相对分子质量为404)固体,在冷水浴中分批加入Ⅰ中所得滤液,并不断搅拌,反应1小时后溶液呈深紫红色(即)。
②离心分离除去水解得到的胶体,留上层清液(深紫红色)。
③向②的上层清液中缓慢加入KOH饱和溶液50.00mL,冰水浴保持5min,过滤,得(相对分子质量为198)粗产品。
④将粗产品重结晶,并用异丙醇洗涤,低温烘干,得纯产品2.13g。
(5)合成的离子方程式为_______。
(6)用异丙醇洗涤的目的是_______。
(7)的产率为_______(保留至0.1%)。
11、硬铝(因其主要成分,在此仅看作Al-Cu合金)常用于建筑装潢。1.18g某种硬铝恰好与10mL某浓度的硝酸完全反应,生成的混合气体(其中NO2与NO的体积比为2:1)再与448mL氧气(标准状况)混合,恰好能被水完全吸收。则该硝酸的物质的量浓度_____________mol/L。请写出简要计算过程。
12、以废钒电池负极电解液(主要化学成分是V3+、V2+、H2SO4) 为原料,回收其中的钒制备V2O5的工艺流程如图所示:
已知:氯酸浓度较高或受热时易发生分解。
回答下列问题:
(1)在“氧化”中低价态钒都转化为,其中V3+转化反应的离子方程式为___________,实际生产中的氧化剂不选择HClO3的原因是___________。
(2)“浓缩”至钒溶液质量浓度(折合V2O5质量浓度)为27.3 g·L-1'时,则溶液中c()=___________ mol·L-1。(结果保留1位小数)
(3)pH对沉钒率(η)的影响如图所示,则沉钒时控制钒液合适的pH范围是___________,沉淀产物为2NH4V3O8·H2O,则加(NH4)2SO4沉钒的化学方程式是___________。
(4)“过滤”后对沉淀进行洗涤,采用稀(NH4)2SO4作洗涤液的目的是___________。检验沉淀已洗涤干净的操作是___________。
(5)“煅烧”需要在通风或氧化气氛下进行,其目的是___________。
13、“黄铜”一词最早见于西汉东方朔所著《申异经。中荒经》“西北有宫,黄铜为墙,题曰地皇之宫”。
黄铜实为铜锌合金的俗称,回答下列问题:
(1)基态铜原子核外电子占据能级数为___________ ;核外电子共有___________种不同的运动状态。
(2)硫酸锌溶于氨水可形成[ Zn(NH3)4]2+离子
①[ Zn(NH3)4]2+离子具有对称的空间构型,其中两个NH3被两个Cl取代,只有一种产物,则[ Zn(NH3)4]2+的空间构型为___________。
②[Zn(NH3)4]2+中Zn2+与NH3之间形成的化学键称为___________,提供孤对电子的成键原子是___________
③NH3极易溶于水PH3微溶于水,原因是___________;NH3是___________分子(填“极性"或“非极性”)。
(3)元素铜的第一电离能ICu,元素锌的第一电离能IZn,已知ICu<IZn ,其原因是___________。
(4)Cu与Cl形成的一种化合物的立方晶胞如图所示。该化合物的化学式为___________,已知晶胞参数a=0.542nm,此晶胞的密度为___________g·cm-3.(写出计算式,不要求计算结果)