1、下列事件中,是不可能事件的是( )
A. 抛掷2枚正方体骰子,都是6点朝上
B. 抛掷2枚硬币,朝上的都是反面
C. 从只装有红球的袋子中摸出白球
D. 从只装有红、蓝球的袋子中摸出蓝球
2、下列计算中正确的是( )
A. B.
C. D.
3、某种感冒病毒的直径是0.00000012米,将0.00000012用科学记数法可表示为( )
A.12×10﹣8
B.1.2×10﹣8
C.1.2×10﹣7
D.0.12×10﹣7
4、抛物线的对称轴为
A. B.
C.
D.
5、国家统计局12月18日发布公告,经初步统计,2020年全国棉花播种面积约为3170000公顷.将3170000用科学记数法表示为( )
A.
B.
C.
D.
6、如图,在△ABC中,AB=10,AC=8,BC=6.按以下步骤作图:
①以A为圆心,任意长为半径作弧,分别交AB,AC于点M,N;
②分别以M,N为圆心,以大于MN的长为半径作弧,两弧交于点E;
③作射线AE;
④以同样的方法作射线BF,AE交BF于点O,连结OC,则OC为( )
A.2
B.2
C.
D.1
7、在平面直角坐标系中,点分别在三个不同的象限.若正比例函数
的图象经过其中两点,则
( )
A.2
B.
C.
D.
8、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )
A.甲比乙稳定
B.乙比甲稳定
C.甲与乙一样稳定
D.无法确定
9、如图,,
分别与
相切于
,
两点,点
在
上,
,则
的度数为( )
A. B.
C.
D.
10、已知关于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是( )
A.m>
B.m≥
C.m>且m≠2
D.m≥且m≠2
11、不等式2x﹣7<5﹣2x的非负整数解的个数为__个.
12、如图,中,
,
,以
为直径的
交
于点
,则弧
的长为________.
13、大小、形状完全相同的5张卡片,背面分别写着“我”“的”“中”“国”“梦”这5个字,从中随机抽取一张,则这张卡片背面恰好写着“中”字的概率是______.
14、一方有难,八方支援.2020年春节,“新冠”肺炎来袭,全国共计约42600名医护人员逆行援鄂,42600这个数据用科学记数法表示为__________.
15、如图,在直角三角形ABC中,∠A=90°,AB=3,AC=4,BC=5,DE∥BC,点A到DE的距离是1,则DE与BC的距离是_____.
16、某同学想利用影子长度测量操场上旗杆的高度,在某一时刻,他测得自己影子长为0.8m,立即去测量旗杆的影子长为5m,已知他的身高为1.6m,则旗杆的高度为_______m.
17、已知:如图在平行四边形ABCD中,过对角线BD的中点O作直线EF分别交DA的延长线、AB、DC、BC的延长线于点E、M、N、F.
(1)观察图形并找出一对全等三角形:△ ≌△ ,请加以证明;
(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?
18、解不等式 ,并写出它的正整数解.
19、下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点F,∠CDF=45°,求DM和BC的水平距离BM的长度.(结果精确到0.1 m.参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)
20、“重整行装再出发,驰而不息再争创”,2018年5月8日兰州市召开了新一轮全国文明城市创建启动大会.某校为了更好地贯彻落实创建全国文明城市目标,举办了“我是创城小主人”的知识竞赛.该校七年级、八年级分别有300人,现从中各随机抽取10名同学的测试成绩进行调查分析,成绩如下:
七年级 | 85 | 65 | 84 | 78 | 100 | 78 | 85 | 85 | 98 | 83 |
八年级 | 96 | 60 | 87 | 78 | 87 | 87 | 89 | 100 | 83 | 96 |
整理、描述数据:
分数段 | ||||
七年级人数 | 1 | 2 | 5 | 2 |
八年级人数 | 1 | 1 | 5 | 3 |
分析数据:
年级 | 平均数 | 中位数 | 众数 |
七 | 84.1 | _______ | 85 |
八 | 86.3 | 87 | ______ |
得出结论:
(1)根据上述数据,将表格补充完整;
(2)估计该校七、八两个年级学生在本次测试成绩中可以取得优秀的人数共有多少人?
(3)你认为哪个年级知识掌握的总体水平较好,说明理由.
21、为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课程:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查的结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次共调查了多少名学生?
(2)请将条形统计图补充完整;
(3)在被调查的学生中,选修书法的有2名男同学,其余为女同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请你用列表或画树状图的方法,求所抽取的2名同学恰好是1名男同学和1名女同学的概率.
22、如图,一次函数的图象与反比例函数
的图象交于
两点
求一次函数的解析式;
观察函数图象,直接写出关于x的不等式
的解集.
23、如图,在平面直角坐标系中,反比例函数的图象经过点A(1, 2),B(m ,n)(m>1),过点B作y轴的垂线,垂足为C.
(1)求该反比例函数解析式;
(2)当△ABC面积为2时,求点B的坐标
24、如图,将一块直角三角形纸板的直角顶点放在C(1,)处,两直角边分别与x,y轴平行,纸板的另两个顶点A,B恰好是直线y=kx+
与双曲线y=
(m>0)的交点.
(1)求m和k的值;
(2)设双曲线y=(m>0)在A,B之间的部分为L,让一把三角尺的直角顶点P在L上滑动,两直角边始终与坐标轴平行,且与线段AB交于M,N两点,请探究是否存在点P使得MN=
AB,写出你的探究过程和结论.