和田地区2025届高三毕业班第一次质量检测数学试题

考试时间: 90分钟 满分: 125
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共12题,共 60分)
  • 1、正方体ABCDA1B1C1D1中,既与AB共面也与CC1共面的棱的条数为(  )

    A.3 B.4 C.5 D.6

  • 2、已知,则等于(   )

    A. B. C. D.

  • 3、中,角ABC所对的边分别为abc,若,则的面积S等于(  

    A.10 B. C.20 D.

  • 4、函数在一个周期内的图象如图所示,为图象的最高点,为图象与轴的交点,且为正三角形,则下列结论中错误的是()

    A.的最小正周期为

    B.上单调递减

    C.的值域为

    D.的图象上所有的点向右平移个单位长度后,图象关于轴对称

  • 5、终边落在直线上的角的集合为(       

    A.

    B.

    C.

    D.

  • 6、已知函数是偶函数,且在上是增函数,若,则的取值范围是

    A.

    B.

    C.

    D.

  • 7、已知,则       

    A.0

    B.1

    C.2

    D.3

  • 8、下列四种说法中:

    ①有两个面平行,其余各面都是平行四边形的几何体叫棱柱

    ②相等的线段在直观图中仍然相等

    ③一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥

    ④用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台正确的个数是(  

    A.0 B.1 C.2 D.3

  • 9、函数的最小正周期为(   )

    A. B. C. D.

  • 10、下列不等式中成立的是(       

    A.若,则

    B.若,则

    C.若,则

    D.若,则

  • 11、设集合,则       ).

    A.

    B.

    C.

    D.

  • 12、已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是

    A.3

    B.4

    C.

    D.

二、填空题 (共10题,共 50分)
  • 13、用斜二测画法画出的水平放置的三角形的直规图为(如图),且,则原三角形的面积为___________.

  • 14、下表是关于某校高一年级男女生选科意向的调查数据,人数如表所示:

     

    选修物理

    选修历史

    男生

    160

    40

    女生

    80

    120

     

     

    现要在所有参与调查的人中用分层抽样的方法抽取n个人做进一步的调查,若在选修物理的男生中抽取了8人,则n的值为________.

  • 15、已知一组数据4.7,6.1,4.2,5.0,5.3,5.5,则该组数据的第25百分位数是________

  • 16、若圆内接正五边形的边长为1,则圆的半径为___________(答案保留两位小数).

  • 17、中,给出如下命题:

    所在平面内一定点,且满足,则的垂心;

    所在平面内一定点,动点满足,则动点一定过的重心;

    内一定点,且,则

    ④若,则为等边三角形,

    其中正确的命题为_____(将所有正确命题的序号都填上)

  • 18、在等比数列中,,公比,若,则的值为

  • 19、分别是的内角A,B,C的对边,根据下列条件解三角形,有两解的是____________

    ,②

  • 20、蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球因而蹴鞠就是指古人以脚蹴、蹋、踢皮球的活动,类似于今日的足球.2006年5月20日,蹴鞠作为非物质文化遗产经国务院批准已列入第一批国家非物质文化遗产名录.已知某鞠(球)的表面上有四个点ABCP,且球心ОPC上,,则该鞠(球)的表面积为__________.

  • 21、将角度化为弧度:________.

  • 22、中,角所对的边分别为,已知, ,若,则的面积为__________

三、解答题 (共3题,共 15分)
  • 23、设数列的前n的和,其中,数列是公比q的等比数列,其中,且的等差中

    1)求数列的通公式和q

    2)若数列的首,并,求数列的通公式.

  • 24、已知数列的前项和为,满足,数列的前项为,满足

    (Ⅰ)设,求证:数列为等比数列;

    (Ⅱ)求的通项公式;

    (Ⅲ)若对任意的恒成立,求实数的最大值.

  • 25、已知数列满足:.

    I)求证:数列是等比数列;

    II)设的前项和为,求证.

查看答案
下载试卷
得分 125
题数 25

类型 高考模拟
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
©2022 zidianyun.com ·