2025年浙江绍兴中考一模试卷数学

考试时间: 90分钟 满分: 120
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共10题,共 50分)
  • 1、一元二次方程配方后可变形为

    A. B. C. D.

  • 2、如图,已知锐角,以点O为圆心,以任意长为半径作弧交射线于点A,交射线于点B,分别以点AB为圆心,以的长为半径作弧,两弧在内部交于点P,连接;作射线于点C.根据以上作图过程及所作图形,有下列结论:①平分;②;③;④互相平分.其中正确的结论是(  )

    A.①③

    B.①②④

    C.②③④

    D.①②③④

  • 3、如图,菱形ABCD的边ADEF,垂足为点E,点H是菱形ABCD的对称中心.若FC=,EF=DE,则菱形ABCD的边长为(  )

    A. B.3 C.4 D.5

  • 4、有四张正面分别标有数字,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,记下后放回,再任取一张,则两次取出的卡片上的数字和为正数的概率为(       

    A.

    B.

    C.

    D.

  • 5、二次函数 的顶点坐标是( 

    A. (3,2)                          B. (3,﹣2)                          C. (﹣3,﹣2)                          D. (﹣3,2)

  • 6、如图,在ABC中,ABACADBC边上的高,点EFAD的三等分点,若ABC的面积为12cm2,则图中阴影部分的面积为(  )

    A.2cm2

    B.4cm2

    C.6cm2

    D.8cm2

  • 7、如图,桌面上竖直放置一等腰直角三角板ABC,若测得斜边AB在桌面上的投影DE8cm,且点B距离桌面的高度为3cm,则点A距离桌面的高度为(   )

    A. 6.5cm   B. 5cm   C. 9.5cm   D. 11cm

     

  • 8、ABC中,AB=63,BC=15,AC=49,和它相似的三角形的最短边是5,则最长边是(   )

    A.18   B. 21 C. 24   D. 17

  • 9、下列语句中,不是命题的是(   

    A.锐角小于钝角

    B.作∠A的平分线

    C.对顶角相等

    D.同角的补角相等

  • 10、下列说法正确的是(  

    A.绝对值等于它本身的数一定是正数 B.一个数的相反数一定比它本身小

    C.负数没有立方根 D.实数与数轴上的点一一对应

二、填空题 (共6题,共 30分)
  • 11、已知,,那么_____

  • 12、不等式组的解是_______________

  • 13、0-|-7|=_____

  • 14、如图,数轴上线段,点在数轴上表示的数是-10,点在数轴上表示的数是16,若线段以6个单位长度/秒的速度向右匀速运动,同时线段以2个单位长度/秒的速度向左匀速运动.当点运动到线段上时,是线段上一点,且有关系式成立,则线段的长为_________

  • 15、有理数0的相反数是____________.

  • 16、下列有四个结论,其中正确的是___________

    ①若,则a为2,4;

    的运算结果中不含项,则

    ③若,则

    ,则可表示为

三、解答题 (共8题,共 40分)
  • 17、是否存在实数x,使分的值比分式的值大1?若存在,请求出x的值;若不存在,请说明理由.

  • 18、在学校的“科艺节”上,掷飞镖游戏规则如下:如图,掷到区和区的得分不同,区为小圆内部分,区为大圆内小圆外部分,掷中一次记一次点.现统计小华、小芳和小明掷中与得分情况如下图,那么小明的得分是多少?

  • 19、某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次的降价,现在售价每盒16元,则该药品平均每次降价的百分率是多少?

  • 20、如图1,在RtABC中,∠BCA=90°,∠B=60°,CDABC的高,将BDC绕着点D逆时针旋转,得到图2的BDC′,连接AC′,BC

    (1)若BDAC上,BD=1,则旋转角是 °,点C

    的运动路径是

    (2)求

  • 21、如图,在中,D的中点,,求的度数.

  • 22、已知:ABC是一张等腰直角三角形纸板,∠B=90°,AB=BC=1.

    (1)要在这张纸板上剪出一个正方形,使这个正方形的四个顶点都在ABC的边上.小林设计出了一种剪法,如图1所示.请你再设计出一种不同于图1的剪法,并在图2中画出来.

    (2)若按照小林设计的图1所示的剪法来进行裁剪,记图1为第一次裁剪,得到1个正方形,将它的面积记为,则=___________;在余下的2个三角形中还按照小林设计的剪法进行第二次裁剪(如图3),得到2个新的正方形,将此次所得2个正方形的面积的记为,则=___________;在余下的4个三角形中再按照小林设计的的剪法进行第三次裁剪(如图4),得到4个新的正方形,将此次所得4个正方形的面积的记为;按照同样的方法继续操作下去……,第次裁剪得到_________个新的正方形,它们的面积的=______________.

  • 23、问题探究:三角形的角平分线是初中几何中一条非常重要的线段,它除了具有平分角、角平分线上的点到角两边的距离相等这些性质外,还具有以下的性质:

    如图①,在△ABC中,AD平分∠BACBC于点D,则.提示:过点CCEADBA的延长线于点E

    请根据上面的提示,写出得到这一结论完整的证明过程.

    结论应用:如图②,在RtABC中,∠C90°AC8BC15AD平分∠BACBC于点D.请直接利用问题探究的结论,求线段CD的长.

  • 24、如图,在中,,点D边的中点,点P边上的动点(与点BC不重合),连接,设的面积为S

    (1)用含x的代数式表示_____;

    (2)求的面积S(用含x的代数式表示);

    (3)当时,求S的值.

查看答案
下载试卷
得分 120
题数 24

类型 中考模拟
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
©2022 zidianyun.com ·