1、实数a,b,c在数轴上的对应点的位置如图所示,下列式子正确的是( )
A.b+c>0
B.a-b>a-c
C.ac>bc
D.ab>ac
2、如图,在⊙O中,弧AB=弧AC,∠ADC=25°,则∠CBO的度数是( )
A. 50° B. 25° C. 30° D. 40°
3、在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点.已知二次函数的图象上有且只有一个完美点
,且当
时,函数
的最小值为﹣3,最大值为1,则m的取值范围是( )
A. B.
C.
D.
4、-2的相反数是( )
A. -2 B. - C. 2 D.
5、某自动控制器的芯片,可植入2020000000粒晶体管将2020000000用科学记数法表示应为( )
A.
B.
C.
D.
6、下列命题中不成立的是( )
A.矩形的对角线相等
B.三边对应相等的两个三角形全等
C.两个相似三角形面积的比等于其相似比的平方
D.一组对边平行,另一组对边相等的四边形一定是平行四边形
7、如图,△ABC内接于圆O,∠BOC=120°,AD为圆O的直径.AD交BC于P点且PB=1,PC=2,则AC的长为( )
A. B.
C. 3 D. 2
8、已知点在第四象限,则
的取值范围在数轴上表示正确的是( )
A.
B.
C.
D.
9、下列运算正确的是( )
A.
B.
C.
D.
10、如图,AB是⊙O的弦,OC是⊙O的半径,OC⊥AB于点D,若AB=8,OD=3,则⊙O的半径等于( )
A.4 B.5 C.8 D.10
11、 因式分解: .
12、若点(m+3,-4)和点(-4,n+1)关于x轴对称,则m+n=________
13、4的倒数是 .
14、已知点A与B(1,−6)关于y轴对称,则点A关于原点对称的点C的坐标是__________.
15、如图,在等腰直角三角形ABC中,∠ACB=90°,AB=8,点E是AB的中点,以AE为边作等边△ADE(点D与点C分别在AB异侧),连接CD,则△ACD的面积是_________.
16、如图,半圆O的直径是AB,弦AC与弦BD交于点E,且OD⊥AC,若∠DEF=60°,则tan∠ABD=_____.
17、先化简,再求值:,其中
.
18、如图1,一扇门ABCD,宽度AB=1m,A到墙角E的距离AE=0.5m,设E,A,B在一条直线上,门打开后被与门所在墙面垂直的墙阻挡(EA⊥EB′),边BC靠在墙B'C'的位置.
(1)求∠BAB'的度数;
(2)打开门后,门角上的点B在地面扫过的痕迹为弧BB',设弧BB'与两墙角线围成区域(如图2)的面积为S(m2),求S的值(π≈3.14,≈1.73,精确到0.1).
19、已知:如图1,,
.
(1)判断图中平行的直线,并给予证明;
(2)如图2,,
,请判断
与
的数量关系,并证明.
20、如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s。
⑴连接AQ、CP交于点M,在点P、Q运动的过程中,∠CMQ的大小变化吗?若变化,则说明理由,若不变,请直接写出它的度数;
⑵点P、Q在运动过程中,设运动时间为t,当t为何值时,△PBQ为直角三角形?
⑶如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ的大小变化吗?则说明理由;若不变,请求出它的度数。
21、阅读下面材料:
小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求的值.
小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).请回答:的值为 .
参考小昊思考问题的方法,解决问题:
如图 3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3 .
(1)求的值;
(2)若CD=2,则BP=__________.
22、如图,直升飞机在大桥AB上方C点处测得A,B两点的俯角分别为45°和31°.若飞机此时飞行高度CD为1205m,且点A,B,D在同一条直线上,求大桥AB的长.(精确到1m)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
23、已知二次函数y=2x2+4x+k﹣1.
(1)当二次函数的图象与x轴有交点时,求k的取值范围;
(2)若A(x1,0)与B(x2,0)是二次函数图象上的两个点,且当x=x1+x2时,y=﹣6,求二次函数的解析式,并在所提供的坐标系中画出大致图象;
(3)在(2)的条件下,将抛物线在x轴下方的部分沿x轴翻折,图象其余部分保持不变,得到一个新的图象,当直线y=x+m(m<3)与新图象有两个公共点,且m为整数时,求m的值.
24、计算:.