1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、甲醇(CH3OH)是一种重要的化工原料,既可用于化工生产,也可直接用做燃料。
(1)工业上可用CO2和H2反应制得甲醇。在2×105Pa、300℃的条件下,CO2和H2反应生成甲醇和水,当消耗2molCO2时放出98kJ的热量,该反应的热化学方程式为___________。
(2)甲醇也可由CO与H2反应制得。在一定温度下,初始容积相同的两个容器中(如图),发生反应: CO(g)+2H2(g)=CH30H(g)。
① 能表明甲和乙容器中反应一定达到平衡状态的是________(填字母代号)。
A.混合气体的密度保持不变 B.混合气体的总压强保持不变
C.CO的质量分数保持不变 D. CO 与H2的转化率之比为3 : 2
E.v(CO)=v(CH30H)
②两容器中反应达到平衡时,Co的转化率α甲______α乙(填“>”、“< ”或“=”)
(3)组成n(H2)/n(CO+CO2)=2.60时,体系中CO 的平衡转化率(α)动与温度和压强的关系如图所示。图中的压强由大到小依次为_______,其判断理由是______________。
(4)甲醇燃料电池(简称DMFC)可作为常规能源的替代品而备受关注。DMFC的工作原理如图所示:
① 加入a 物质的电极是电池的______(填“正”或“负”)极,其电极反应式为________.
② 常温下以该装置作电源,用惰性电极电解NaCl和CuSO4的混合溶液,当电路中通过0.4mol电子的电量时,两电极均得到0.14mol的气体。若电解后溶液体积为4OL,则电解后溶液的pH 为________。
3、氯原子核外电子能量最高的电子亚层是________;H、C、N、O、Na的原子半径从小到大的顺序为______________________________。
4、三硫化四磷是黄绿色针状结晶,其结构如图所示。不溶于冷水,溶于叠氮酸、二硫化碳、苯等有机溶剂,在沸腾的NaOH稀溶液中会迅速水解。回答下列问题:
(1)Se是S的下一周期同主族元素,其核外电子排布式为____________。
(2)第一电离能:S______(填“>”、“<”或“=”,下同)P,电负性:S_____P。
(3)三硫化四磷分子中P原子采取_________杂化,与PO3-互为等电子体的化合物分子的化学式为_______。
(4)二硫化碳属于________(填“极性”或“非极性”)分子。
(5)用NA表示阿伏伽德罗常数的数值,0.1mol三硫化四磷分子中含有的孤电子对数为_________。
(6)叠氮酸(HN3)在常温下是一种液体,沸点较高,为308.8K,主要原因是_____________。
(7)氢氧化钠具有NaCl型结构,其晶胞中Na+与OH-之间的距离为αcm,晶胞中Na+的配位数为______,用NA表示阿伏加德罗常数的数值,NaOH的密度为_______g·cm-3。
5、(1)已知3种原子晶体的熔点数据如下表:
| 金刚石 | 碳化硅 | 晶体硅 |
熔点/℃ | >3550 | 2600 | 1415 |
金刚石熔点比晶体硅熔点高的原因是_______。
(2)提纯含有少量氯化钠的甘氨酸样品:将样品溶于水,调节溶液的pH使甘氨酸结晶析出,可实现甘氨酸的提纯。其理由是_______。
6、已知:E是石油裂解气的主要成份,分子式为C2H4,D是一种具有香味的物质,各物质间的转化如图所示(有的反应条件和产物已略去).
请回答下列问题:
(1)化合物B的结构简式为
(2)反应①的反应类型
(3)写出反应②的化学方程式 .
7、【化学—选修3:物质结构】前四周期原子序数依次增大的六种元素,A、B、C、D、E、H中,A元素在宇宙中含量最丰富,B元素基态原子的核外有3种能量不同的原子轨道,且每种轨道中的电子数目相同。D元素是地壳中含量最多的元素,E为d区元素,其外围电子排布中有4对成对电子,H元素基态原子最外层只有一个电子,其它层均已充满电子。
(1)E元素在周期表中的位置是 。
(2)六种元素中电负性最大的元素为 ,前五种元素中第一电离能最小的元素为______(写元素符号)。C元素与元素氟能形成C2F2分子,该分子中C原子的杂化方式是____________。
(3)配合物E(BD)4常温下为液态,易溶于CCl4、苯等有机溶剂,据此判断该分子属于 分子(填“极性”或“非极性”)。该分子中σ键与π键数目比为 。
(4)H单质的晶胞结构如图所示,则原子采取的堆积方式为 ,若已知H原子半径为r pm ,NA表示阿伏伽德罗常数,摩尔质量为M,用相应字母表示:
①该原子的配位数为 。
②该晶体的密度为 g/cm3。
③H原子采取这种堆积方式的空间利用率为 (用含π表达式表示)。
8、[化学-选修3:物质结构与性质]
铁氧体是一种磁性材料,具有广泛的应用。 -
(1)基态铁原子的核外电子排布式为[Ar]_______。
(2)工业制备铁氧体常使用水解法,制备时常加入尿素[CO(NH2)2 ]、醋酸钠等碱性物质。尿素分子中四种不同元素的电负性由大至小的顺序是____________;醋酸钠中碳原子的杂化类型是_________。
(3)工业制备铁氧体也可使用沉淀法,制备时常加入氨(NH3)、联氨(N2H4)等弱碱。比较下表中氨(NH3)、联氨(N2H4)的熔沸点,解释其高低的主要原因________。
| N2H4 | NH3 |
熔点/℃ | 2 | -77.8 |
沸点/℃ | 113.5 | -33.5 |
(4)下图是从铁氧体离子晶体Fe3O4中,取出的能体现其晶体结构的一个立方体,则晶体中的氧离子是否构成了面心立方最密堆积______(填“是”或“否”),该立方体是不是Fe3O4的晶胞______(填“是”或“否”),立方体中三价铁离子处于氧离子围成的_____空隙(填空间结构)。
(5)解释该Fe3O4晶体能导电的原因________,根据上图计算Fe3O4晶体的密度_____g•cm-3。 (图中a=0.42nm,计算结果保留两位有效数字)
9、(1)已知Li、Na、K、Rb、Cs的熔、沸点呈下降趋势,而F2、Cl2、Br2、I2的熔点和沸点依次升高,分析升高变化的原因是_______。
(2)CN2H4是离子化合物且各原子均满足稳定结构,写出CN2H4的电子式_______
(3)已知金刚石中C-C键能小于C60中C-C键能,有同学据此认为C60的熔点高于金刚石,此说法不正确的理由_______。
10、水合肼(N2H4·H2O)又名水合联氨,无色透明,具有腐蚀性和强还原性的碱性液体,它是一种重要的化工试剂,利用尿素法生产水合肼的原理为:CO(NH2)2+2NaOH+NaClO=Na2CO3+ N2H4·H2O +NaCl
实验一:制备NaClO溶液。(实验装置如右图所示)
(1)配制30%NaOH溶液时,所需玻璃仪器除量筒外还有 (填标号)。
A.容量瓶 B.烧杯 C.烧瓶 D.玻璃棒
(2)锥形瓶中发生反应的离子方程式是 。
(3)设计实验方案:用中和滴定原理测定反应后锥形瓶中剩余NaOH的浓度(实验提供的试剂:H2O2溶液、FeCl2溶液、0.10 mol·L-1盐酸、酚酞试液): 。
实验二:制取水合肼。(实验装置如右图所示)
(4)控制反应温度,将分液漏斗中溶液缓慢滴入三颈烧瓶中,充分反应。加热蒸馏三颈烧瓶内的溶液,收集108~114℃馏分。分液漏斗中的溶液是 (填标号)。A.CO (NH2)2溶液 B.NaOH和NaClO混合溶液原因是: (用化学方程式表示)。
实验三:测定馏分中肼含量。
(5)称取馏分5.0g,加入适量NaHCO3固体,加水配成250mL溶液,移出25.00mL置于锥形瓶中,并滴加2~3滴淀粉溶液,用0.10mol·L-1的I2溶液滴定。滴定过程中,溶液的pH保持在6.5左右。(已知:N2H4·H2O + 2I2= N2↑+ 4HI + H2O)
①滴定时,碘的标准溶液盛放在 (填“酸式”或“碱式”)滴定管中;本实验滴定终点的现象为 。
②实验测得消耗I2溶液的平均值为18.00mL,馏分中水合肼(N2H4·H2O)的质量分数为 。
11、天然水常含有较多钙、镁离子而称之为硬水,硬水软化是指除去钙、镁离子。若某天然水中离子含量如下表:
离子 | Ca2+ | Mg2+ | HCO | 其他 |
含量(mol/L) | 1.2×10-3 | 6.0×10-4 | 8.0×10-4 | / |
现要用化学方法软化10m3这种天然水,则需要先加入Ca(OH)2_______g以除去Mg2+和HCO,后加入Na2CO3_______g以除去Ca2+(要求写出计算过程)。
12、氯化亚铜是重要的铜盐系列化工产品,广泛应用于石油化工、有机合成等行业。CuCl晶体呈白色,见光易分解,微溶于水,不溶于稀盐酸和乙醇,露置于潮湿空气中易水解氧化为绿色的。某研究小组以
(含少量
)粗品为原料制取CuCl,设计的合成路线如下:
已知:①在较高浓度的盐酸下,能溶解于甲基异丁基甲酮。
②CuCl在溶液中存在:
(1)上述合成路线中,的作用是________________________,萃取剂为甲基异丁基甲酮,其作用是________________。
(2)上述合成路线中,通入混合液的实验装置如图所示:
①装置B、D的作用分别是________________________________________________。
②C中反应的离子方程式是___________________________________。
(3)上述合成路线中,向混合液中加入大量去氧水的目的是______________________。
(4)上述合成路线中,一系列操作包括:抽滤、洗涤、干燥。
干燥时应注意密封、_________________________。
13、氮及其化合物在工农业生产和生命活动中起着重要的作用,但同时又是造成环境污染的主要物质,其转化规律一直是科学家们研究的热点问题。回答下列问题:
(1)已知氮氧化物转化过程中的能量变化如图所示(图中表示生成2 mol NO2的能量变化)。则2NO(g) +O2(g)=2NO2(g) ΔH=_______。
(2)某温度下,反应的平衡常数如下:
I.2NO(g)+O2(g)⇌2NO2(g) K1=3. 3×1013
II.2NO(g)⇌N2(g)+O2(g) K2=2. 2× 1030
则该温度下,反应III:2NO2(g)⇌N2(g)+2O2(g) K3=_______ (计算结果保留一位小数),反应II与反应III相比分解趋势较大的反应是_______(填“反应II”或“反应III ”)。
(3)已知反应2NO(g)+2H2(g)⇌N2(g)+2H2O(g) ΔH =- 148 kJ ·mol-1,正反应速率方程式可以表示为v正=k正cm(NO)·cn(H2)(k正为正反应速率常数,只与温度有关。m和n为反应级数,取最简单正整数)。为了探究一定温度下NO、H2的浓度对反应速率的影响,测得实验数据如下:
序号 | c(NO)/(mol·L-1) | c(H2)/ (mol·L-1) | v正/(mol·L-1·min-1) |
I | 0.10 | 0.10 | 0.414k正 |
II | 0.10 | 0.20 | 0.828k正 |
III | 0.30 | 0.10 | 3.726k正 |
①v正 =k正cm(NO)·cn(H2)中,m=_______、n=_______。
②经研究,有人提出上述反应分两步进行: I. 2NO(g)+ H2 (g)=N2 (g) + H2O2(g);II. H2(g)+H2O2(g)=2H2O(g)。化学总反应由较慢的一步反应决定。上述反应中II反应较快,则反应I正反应活化能 _______(填“大于”“小于”或“等于”)反应II正反应活化能。
(4)在恒温条件下,将2 mol Cl2和1 mol NH3充入某密闭容器中发生反应:2Cl2(g) + NH3(g)⇌NHCl2(l) + 2HCl(g),测得平衡时Cl2和HCl的物质的量浓度与平衡总压的关系如图所示。则A、B、C三点中NH3转化率由大到小的顺序是_______;计算 C点时该反应的压强平衡常数Kp(C)=_______MPa -1(Kp是平衡分压代替平衡浓度计算,分压=总压×物质的量分数)。