1、的相反数的倒数是( )
A.
B.
C.
D.
2、如图,在半径为2的⊙O中,C为直径AB延长线上一点,CD与圆相切于点D,连接AD,已知∠DAC=30°,则线段CD的长为( )
A.1 B. C.2 D.2
3、如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是( )
A.25min~50min,王阿姨步行的路程为800m
B.线段CD的函数解析式为
C.5min~20min,王阿姨步行速度由慢到快
D.曲线段AB的函数解析式为
4、已知4m=a,8n=b,其中m,n为正整数,则22m+6n=( )
A.ab2 B.a+b2 C.a2b3 D.a2+b3
5、如图,线段AB的坐标分别是A(2,4)、B(8,2),以原点O为位似中心,将线段AB缩小后得线段A′B′.若A点的对应点A′的坐标为(-1,-2),则点B的对应点B′的坐标是( ).
A. (-4,-1) B. (-1,-4) C. (5,-4) D. (-5,-4)
6、若点都在反比例函数
的图象上,则
的大小关系是( )
A.
B.
C.
D.
7、
化简+
的结果是( )
A. x+1 B. C. x-1 D.
8、龙兴两江国际影视城是冯小刚拍摄的电影《一九四二》取景地之一.为估计重庆一中初中部8000名学生去过龙兴两江国际影视城的人数,随机抽取重庆一中400名初中部学生,发现其中有50名学生去过该景点,由此估计重庆一中初中部8000名学生中有( )名学生去过该景点.
A. 1000 B. 800 C. 720 D. 640
9、将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为( )
A. y=﹣2(x﹣1)2+1 B. y=﹣2(x+3)2﹣5
C. y=﹣2(x﹣1)2﹣5 D. y=﹣2(x+3)2+1
10、在代数式 中,m的取值范围是( )
A.m≤3
B.m≠0
C.m≥3
D.m≤3且m≠0
11、图1为一艺术拱门,下部为矩形ABCD,AB、AD的长分别为m和4m,上部是圆心为O的劣弧CD,∠COD=120°.现欲以点B为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2所示.设BC与地面水平线所成的角为
,记拱门上的点到地面的距离为h,当h取最大值时,此时
为________°.
12、已知,|a﹣2|+|b+3|=0,则ba=_____.
13、学校运动会上,九年一班和九年二班入场方块队人数相同,平均身高也相同,身高的方差分别是,
,则__________班方块队的身高比较整齐(填“一”或“二”).
14、从线段、等边三角形、平行四边形、圆、双曲线、抛物线中随机抽取两个(不放回),得到的图形都是中心对称图形的概率是________.
15、在实数范围内定义一种运算“*”,其运算法则为a*b=a2﹣ab.根据这个法则,下列结论中正确的是_______.(把所有正确结论的序号都填在横线上)
①*
=2﹣
;②若a+b=0,则a*b=b*a;③(x+2)*(x+1)=0是一元二次方程;④方程(x+3)*1=1的根是x1=
,x2=
.
16、如图,直线AB、CD相交于点O, ,垂足为O,如果
,则
_______.
17、△ABC为等边三角形,.
.
(1)求证:四边形是菱形.
(2)若是
的角平分线,连接
,找出图中所有的等腰三角形.
18、如图,将矩形ABCD沿线段AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.
(1)求证:△AGE≌△AGD
(2)探究线段EG、GF、AF之间的数量关系,并说明理由;
(3)若AG=6,EG=2,求BE的长.
19、如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.
(1)求证:PE=PD;
(2)求∠PED的度数.
20、已知抛物线交
轴于点(0,0)和点
,抛物线
交
轴于点(0,0)和点
,抛物线
交
轴于点(0,0)和点
…按此规律,抛物线
交
轴于点(0,0)和点
(其中n为正整数),我们把抛物线
称为系数为
的“关于原点位似”的抛物线族.
(1)试求出的值;
(2)请用含n的代数式表示线段的长;
(3)探究下列问题:
①抛物线的顶点纵坐标
与a、n有何数量关系?请说明理由;
②若系数为a的“关于原点位似”的抛物线族的各顶点坐标记为(T,S),请直接写出S和T所满足的函数关系式.
21、如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.
(1)求sinB的值;
(2)如果CD=,求BE的值.
22、如图,已知▱ABCD中,∠ABC=60°,AB=4,BC=m,E为BC边上的动点,连结AE,作点B关于直线AE的对称点F.
(1)若m=6,①当点F恰好落在∠BCD的平分线上时,求BE的长;
②当E、C重合时,求点F到直线BC的距离;
(2)当点F到直线BC的距离d满足条件:2﹣2≤d≤2
+4,求m的取值范围.
23、如图,反比例函数的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:
(1)图象的另一支在第________象限;在每个象限内,随
的增大而________;
(2)常数的取值范围是________;
(3)若此反比例函数的图象经过点,求
的值.点
是否在这个函数图象上?点
呢?
24、如图,以AB为直径的⊙O交∠BAD的平分线于点C,交AD于点F,过点C作CD⊥AD于D,交AB的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)若=
,求cos∠DAB的值.