1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、硫酸锌可作为食品锌强化剂的原料。工业上常用菱锌矿生产硫酸锌,菱锌矿的主要成分是ZnCO3,并含少量Fe2O3 、FeCO3 、MgO、CaO等,生产工艺流程图如下:
(1)将菱锌矿研磨成粉的目的是___________________。
(2)完成“氧化除铁”步骤中反应的离子方程式:
□Fe(OH)2+ □____+ □_____="=" □Fe(OH)3+ □Cl_
(3)针铁矿(Goethite)是以德国诗人歌德(Goethe)名字命名的,组成元素是Fe、O和H ,化学式式量为89,化学式是_______ 。
(4)根据下表数据,调节“滤液2”的pH时,理论上可选用的最大区间为______ 。
| Mg(OH)2
| Zn(OH)2
| MgCO3
| CaCO3
|
开始沉淀的pH
| 10.4
| 6.4
| —
| —
|
沉淀完全的pH
| 12.4
| 8.0
| —
| —
|
开始溶解的pH
| —
| 10.5
| —
| —
|
Ksp
| 5.6×10-12
| —
| 6.8×10-6
| 2.8×10-9
|
(5)工业上从“滤液3”制取MgO过程中,合适的反应物是_________(选填序号)。
a.大理石粉 b.石灰乳 c.纯碱溶液 d.烧碱溶液
(6)“滤液4”之后的操作依次为 ______ 、_______ 、过滤,洗涤,干燥。
(7)分析图中数据,菱锌矿粉中ZnCO3的质量分数不低于 。
3、某储氢合金(M)的储氢机理简述如下:合金吸附H2→氢气解离成氢原子→形成含氢固溶体MHx(相)→形成氢化物MHy(
相)。已知:
(
相)与MHy(
相)之间可建立平衡:
请回答下列问题:
(1)上述平衡中化学计量数k=________(用含x、y的代数式表示)。
(2)t℃时,向体积恒定的密闭容器中加入一定量的储氢合金(M),随充入H2量的改变,固相中氢原子与金属原子个数比(H/M)与容器中H2的平衡压强p的变化关系如图所示。
①在________温________压强下有利于该储氢合金(M)储存H2(填“低”或“高”)。
②若6g该储氢合金(M)在10 s内吸收的H2体积为24 mL,吸氢平均速率v=________mL/(g∙s)。
③关于该储氢过程的说法错误的是________。
a.OA段:其他条件不变时,适当升温能提升形成相的速率
b.AB段:由于H2的平衡压强p未改变,故AB段过程中无H2充入
c.BC段:提升H2压力能大幅提高相中氢原子物质的量
(3)实验表明,H2中常含有O2、CO2、、H2O等杂质,必须经过净化处理才能被合金储存,原因是___________。
(4)有资料显示,储氢合金表面氢化物的形成会阻碍储氢合金吸附新的氢气分子,若把储氢合金制成纳米颗粒,单位时间内储氢效率会大幅度提高,可能的原因是________________。
(5)某镁系储氢合金的晶体结构如图所示:
该储氢合金的化学式为________。若储氢后每个Mg原子都能结合2个氢原子,则该储氢合金的储氢容量为________mL/g(储氢容量用每克合金结合标准状况下的氢气体积来表示,结果保留到整数)。
4、单宁酸-硫酸体系中,低品位软锰矿(
质量分数为29%)中的Mn(Ⅳ)可被还原为
而浸出。其浸出过程如图所示。
(1)当完全水解,生成的没食子酸和葡萄糖物质的量之比为___________。
(2)写出葡萄糖还原生成
的离子反应方程式:________________。
(3)浸出前后软锰矿与浸取渣的X-射线衍射图如图所示,衍射峰的强度能一定程度反映晶体的质量分数等信息。指出图中对应衍射峰强度变化的原因:____________。
(4)为测定一定条件下该低品位软锰矿中锰元素的浸出率,进行如下实验:
准确称取软锰矿试样,加入一定量硫酸和单宁酸,水浴加热并充分搅拌,一段时间后过滤.将滤液冷却后加水定容至2L,量取20.00mL溶液于锥形瓶中,向锥形瓶中加入足量磷酸作稳定剂,再加入2mL高氯酸,边加边摇动,使
完全氧化为Mn(Ⅲ),加热溶液至无气体产生。冷却后用浓度为
的
溶液滴定至终点,消耗
溶液的体积为
。
①实验室现配溶液的浓度与计算值存在误差,为提高测量结果的精确度,滴定前需要对现配
溶液进行的补充实验是_________。
②完全氧化后加热溶液的目的是____________。
③计算该条件下软锰矿中锰元素的浸出率____________。[
。写出计算过程]
(5)90℃下,控制单宁酸用量和反应时间相同,测得对锰元素浸出率的影响如图所示。
时,锰元素浸出率降低的可能原因是___________。
5、不同温度、压强下,在合成氨平衡体系中N2(g)+3H2(g)2NH3(g),NH3的物质的量分数见表(N2和H2起始物质的量之比为1:3):
温度/氨的平衡含量(%)/压强(MPa) | 20 | 30 | 60 | 100 |
200 | 86.4 | 89.9 | 95.4 | 98.8 |
300 | 64.2 | 71.0 | 84.2 | 92.6 |
400 | 38.2 | 47.0 | 65.2 | 79.8 |
500 | 19.1 | 26.4 | 42.2 | 57.5 |
(1)N原子最外层电子排布式为___,氮气能在大气中稳定存在的原因是___。
(2)已知该反应在2L密闭容器中进行,5min内氨的质量增加了1.7g,则此段时间内H2的平均反应速率为___mol/(L·min)。
(3)该反应的平衡常数表达式___,升高温度,K值___(选填“增大”、“减小”或“不变”)。T℃(K=3.6)的某一时刻下,c(N2)=1mol/L,c(H2)=3mol/L,c(NH3)=9mol/L,在这种情况下该反应是否处于平衡状态___(选填“是”、“否”),此时反应速率是v正___v逆(选填“>”、“<”或“=”)。
(4)合成氨是生产条件一般为压强在20MPa~50MPa,温度为500℃左右,选用该条件的主要原因是___。
(5)从表中数据可知,在该条件下氨的平衡含量并不高,为提高原料利用率,工业生产中采取的措施是___。
(6)工业上用氨水吸收SO2尾气,最终得到化肥(NH4)2SO4。(NH4)2SO4溶液中离子浓度由大到小的顺序是___。
6、(1)氢键是微粒间的一种常见作用力,如存在于醋酸分子间()和硝酸分子内(
)等。已知邻氨基苯甲醛(
)的熔点为39℃,对氨基苯甲醛(
)的熔点为71℃,请说明对氨基苯甲醛的熔点比邻氨基苯甲醛高的原因___。
(2)请用一个化学方程式并结合适当的文字说明HClO、H2CO3和HCO酸性的强弱___。
7、黑火药是我国古代四大发明之一,它的爆炸反应为:2KNO3+3C+S═K2S+N2↑+3CO2↑(已配平)
(1)除S外,上列元素的第一电离能从大到小依次为___________________________;
(2)生成物中,A 的电子式为____________;含极性共价键的分子的中心原子轨道杂化类型_____________;
(3)已知CN-与N2结构相似,推算HCN分子中σ键与π键数目之比为
(4)S的基态原子价层电子排布式为___________,S的一种化合物ZnS在荧光体、光导体材料、涂料、颜料等行业中应用广泛。立方ZnS晶体结构如下图所示,其晶胞边长为540.0pm,密度为________g·cm3(列式并计算),a位置S2-离子与b位置Zn2+离子之间的距离为___________pm。
8、K2SO4是制备K2CO3、KAl(SO4)2等钾盐的原料,可用于玻璃、染料、香料等工业,在医药上可用作缓泻剂,在农业上是主要的无氯钾肥。以下是用氨碱法从明矾石提取硫酸钾工艺流程图。明矾石主要成分为K2SO4•Al2(SO4)3•4Al(OH)3 ,通常含有少量SiO2、Fe2O3等。
回答题:
(1)用28%氨水(密度为0.898g/L)配制4%氨水(密度为0.981g/L)500mL,需28%氨水______mL,配制溶液时,应选用的仪器是______(选填序号)。
(a)20mL量筒 (b)100 mL量筒 (c)500 mL量筒 (d) 500 mL容量瓶
(2)填写下列操作名称:操作Ⅰ_________、操作Ⅱ_________、操作Ⅲ_________。
(3)硅渣主要成分是___________,(写化学式),脱硅后的固体为红泥,可用于_________。
(4)上述流程中可以循环使用的物质X是__________________。
(5)钾氮肥的主要成分是__________,请设计实验检验钾氮肥中(除K+以外)的阳离子:(写出所需试剂、实验步骤和结论)_________________;
(6)为了测定钾氮肥中钾的含量,在试样完全溶于水后,加入足量氯化钡溶液,得到白色沉淀a克,若要计算K2SO4的物质的量,还需要_____________数据,列出计算式:_____________________。
9、(1)皂化实验中,加入的乙醇可以增大油脂与NaOH溶液的接触面积,其原因是___________。
(2)物质的摩氏硬度如下表所示:
| 金刚石 | 晶体硅 | |
摩氏硬度 | 10 | 7 |
的摩氏硬度比金刚石大的原因是___________。
10、辛烯醛是重要化工原料,某小组拟用正丁醛制备辛烯醛并探究其结构。
[制备实验]
已知:①正丁醛的沸点为75.7℃。辛烯醛沸点为177℃,密度为0.848 g·cm-3,不溶于水。
②CH3CH2CH2CHO
(1)在如图1三颈瓶中加入12.6 mL 2% NaOH溶液,在充分搅拌下,从恒压滴液漏斗慢慢滴入10 mL正丁醛。最适宜的加热方式是___________;使用冷凝管的目的是____________。
(2)操作1中使用的主要仪器名称是___________,有机相从___________(填“上”或“下”)口取出。
(3)判断有机相已洗涤至中性的操作方法:___________。
(4)操作2的名称是_____________;固体A的摩尔质量为322 g·mol-1,固体A的化学式为___________。
(5)利用图2装置进行“减压蒸馏”。下列有关说法错误的是___________。(填选项)
A 温度计示数为177℃,指示馏分温度
B 随着温度计液泡高度的提升,所得液体的沸点升高
C 毛细管的作用和沸石相似,防止液体暴沸
D 实验结束后,应先关闭冷凝水,再关闭真空泵
[性质实验]
资料显示:醛类(RCHO)在常温下能与溴水、酸性高锰酸钾溶液反应;在加热条件下能与银氨溶液、新制氢氧化铜浊液反应。
(6)为了证明辛烯醛含有碳碳双键,设计如下方案,能达到实验目的的是________。(填选项)
a 取少量溴水,滴加辛烯醛,振荡,溶液褪色
b 取少量酸性高锰酸钾溶液,滴加辛烯醛,振荡,溶液褪色
c 取少量辛烯醛,加入足量的银氨溶液,水浴加热充分反应后,冷却,在上层清液中先滴加稀盐酸酸化,再滴加溴水,振荡
d 取少量辛烯醛,加入足量的新制Cu(OH)2浊液,加热充分反应后,冷却,在上层清液中先滴加稀盐酸酸化,再滴加溴水,振荡
11、合成氨的原料气N2和H2通常是以焦炭、水和空气为原料制取的,其主要反应是:①2C+O22CO②C+H2O(g)
CO+H2③CO+H2O(g)
CO2+H2,某次生产中将焦炭、H2O(g)和空气(设空气中N2和O2的体积比为4:1)混合反应,所得气体产物经分析,组成如表:
气体 | CO | N2 | CO2 | H2 | O2 |
常温常压下体积(m3) | x | 20 | 19 | 60 | 1.0 |
(1)求表中数据x=___。
(2)已知常温常压下,1mol气体的体积为24.5L,求该生产中参加反应的焦炭的质量___kg。
12、主要成分是NiFe2O4(铁酸镍)、NiO、FeO、CaO、SiO2等,从该矿渣中回收六水合硫酸镍晶体的工艺流程如图:
已知:(NH4)2SO4在350℃以上会分解生成NH3和H2SO4。
(1)28Ni位于元素周期表_____区(填“s”“p”“d”或“ds”),其基态原子核外电子的空间运动状态有_____种。
(2)“焙烧”中,SiO2几乎不发生反应,NiO、CaO、FeO转化为相应的硫酸盐。NiFe2O4生成NiSO4、Fe2(SO4)3,发生该反应的化学方程式为______。
(3)“浸渣”的成分除Fe2O3、FeO(OH)外还含有______(填化学式),为检验浸出液中是否含有Fe3+,可选用的化学试剂是______。
(4)“浸出液”中c(Ca2+)=1.0×10-3mol•L-1,加NaF固体时,忽略溶液体积变化,当除钙率达到99%时,除钙后的溶液中c(F-)=______。[已知Ksp(CaF2)=4.0×10-11]
(5)“萃取”时发生反应Mn+(水相)+nRH(有机相)MRn(有机相)+nH+(水相)(Mn+为金属离子,RH为萃取剂),萃取率与
的关系如图所示,V0/VA的最佳取值为______;“反萃取”能使有机相再生而循环使用,可在有机相中加入______,待充分反应后再分液。
(6)资料显示,硫酸镍结晶水合物的形态与温度有如表关系:
温度 | 低于30.8℃ | 30.8~53.8℃ | 53.8~280℃ | 高于280℃ |
晶体形态 | NiSO4•7H2O | NiSO4•H2O | 多种结晶水合物 | NiSO4 |
从NiSO4溶液获得稳定的NiSO4•H2O晶体的操作是:______、______、过滤、洗涤、干燥等多步操作。
13、绿色能源是未来能源发展的方向,积极发展氢能,是实现“碳达峰、碳中和”的重要举措。回答下列问题:
(1)通过生物柴油副产物甘油制取H2正成为绿色能源的一个重要研究方向。生物甘油水蒸气重整制氢的主要反应如下(K1、K2分别为反应I、Ⅱ的化学平衡常数):
I.C3H8O3(g)3CO(g)+4H2(g) ΔH1=+251kJ·mol-1 K1
Ⅱ.CO(g)+H2O(g)CO2(g)+H2(g) ΔH2=-41kJ·mol-1,K2
①反应I的逆反应能够自发进行的条件是_______(填“高温”、“低温”或“任何温度”)。
②重整总反应C3H8O3(g)+3H2O(g)3CO2(g)+7H2(g)的ΔH3=_______,平衡常数K3=_______。(用含K1、K2的计算式表示)
(2)大量研究表明Pt12Ni、Sn12Ni、Cu12Ni三种双金属合金团簇均可用于催化DRM反应(CH4+CO22CO+2H2),在催化剂表面涉及多个基元反应,其中甲烷逐步脱氢过程的能量变化如图甲所示(吸附在催化剂表面上的物种用*标注,TS1、TS2、TS3、TS4分别表示过渡态1、过渡态2、过渡态3、过渡态4)。
①Pt12Ni、Sn12Ni、Cu12Ni催化甲烷逐步脱氢过程的速率分别为v1、v2、v3,则脱氢过程的速率由小到大的关系为_______。
②甲烷逐步脱氢过程中,决定速率快慢的反应步骤是:________(用化学方程式表示)。
③Sn12Ni双金属合金团簇具有良好的抗积碳作用,有效抑制碳积沉对催化剂造成的不良影响,请结合图甲解释原因:_______。
(3)甲烷干法重整制H2的过程为反应a:CH4+CO22CO+2H2,同时发生副反应b:CO2+H2
CO+H2O,T℃时,在恒压容器中,通入2molCH4和2molCO2发生上述反应,总压强为P0,平衡时甲烷的转化率为40%,H2O的分压为P,则反应a的压强平衡常数Kp=_______(用含P和P0的计算式表示,已知分压=总压×物质的量分数)。
(4)甲烷裂解制氢的反应为CH4(g)=C(s)+2H2(g) ΔH=+75kJ·mol-1,Ni可作该反应的催化剂,CH4在催化剂孔道表面反应时,若孔道堵塞会导致催化剂失活。其他条件相同时,随时间增加,温度对Ni催化剂催化效果的影响如图乙所示。考虑综合因素,使用催化剂的最佳温度为_______;650℃条件下,1000s后,氢气的体积分数快速下降的原因是_______。
(5)我国科技工作者发明了一种电化学分解甲烷的直流电源方法,从而实现了碳和水的零排放方式生产氢气,电化学反应机理如图丙所示。阳极的电极反应式为_______。